Td corrigé Exercice II ça farte ! (5 points) Correction pdf

Exercice II ça farte ! (5 points) Correction

la force de frottement de la neige sur le ski, force parallèle à la piste et de sens ... Le fluor attire les électrons de la liaison, et devient porteur d'une charge ...




part of the document



Bac S 2013 Centres Étrangers CORRECTION ©  HYPERLINK "http://labolycee.org" http://labolycee.org
EXERCICE III Spécialité : « Ça farte ! » (5 points)

1.1. (1 pt) Le système est soumis à :
son poids  EMBED Equation.DSMT4  : force verticale orientée vers le bas ;
la réaction normale  EMBED Equation.DSMT4 de la piste, force perpendiculaire à la piste.
la force de frottement  EMBED Equation.DSMT4  de la neige sur le ski, force parallèle à la piste et de sens opposé au sens du mouvement.


















1.2. (1 pt) La deuxième loi de Newton appliquée au système ski, de masse m constante, dans un référentiel terrestre galiléen, donne :  EMBED Equation.DSMT4 .
D’après l’énoncé, le mouvement est rectiligne et uniformément accéléré : le vecteur  EMBED Equation.DSMT4  est donc orienté parallèlement à la piste et dans le sens du mouvement (en violet sur le schéma).
Les vecteurs  EMBED Equation.DSMT4  et  EMBED Equation.DSMT4  sont donc colinéaires et de sens opposé.
Le vecteur  EMBED Equation.DSMT4  est aussi un vecteur parallèle au plan incliné (en noir sur le schéma).
Pour qu’il y ait mouvement vers le bas, la longueur du vecteur  EMBED Equation.DSMT4  doit être plus grande que celle du vecteur  EMBED Equation.DSMT4 .
La longueur du vecteur  EMBED Equation.DSMT4  est donnée par la relation :  EMBED Equation.DSMT4 .

2. (0,75 pt) Au cours du mouvement, l’altitude du système diminue donc son énergie potentielle de pesanteur diminue. L’énergie potentielle de pesanteur est transformée en partie en énergie cinétique (la vitesse du système augmente) et en partie en chaleur à cause des frottements du système sur la piste.
Le transfert thermique sous le ski provoque la fusion de la neige en eau liquide.

3. (0,75 pt) Les fluorocarbures sont des substances fortement hydrophobes (doc.2). Avec une semelle de ski hydrophobe, les gouttes d’eau sous la semelle sont quasiment sphériques (doc .3 schéma 2.) alors qu’elles sont davantage aplaties avec une semelle non fartée (doc.3 schéma 1).
La surface de contact entre l’eau et une semelle hydrophobe est donc nettement inférieure à celle entre l’eau et une semelle non fartée. Les frottements étant minimisés, la glisse est favorisée avec une semelle hydrophobe.
4.1. (0,75 pt) Les hydrocarbures à longue chaîne carbonée, comme la paraffine, possèdent des liaisons C ( H faiblement polarisées car la différence d’électronégativité entre un atome de carbone et un atome d’hydrogène est faible : 2,6 – 2,1 = 0,5. La faible polarité des liaisons C ( H confère aux hydrocarbures des propriétés hydrophobes intéressantes pour le fartage.
Par ailleurs, le coût des hydrocarbures est moins élevé que celui des fluorocarbures.

4.2.1. (0,5 pt) La différence d’électronégativité entre un atome de fluor et un atome de carbone est grande : 4,0 – 2,6 = 1,4. Le fluor attire les électrons de la liaison, et devient porteur d’une charge partielle négative, tandis que le carbone devient porteur d’une charge partielle positive. Ainsi les liaisons C ( F sont polarisées.

4.2.2. (0,25 pt) La forte polarisation d’une liaison dans une molécule ne suffit pas pour rendre la molécule polaire. En effet, la géométrie de la molécule a une grande importance.

Si les centres géométriques des charges partielles positives et négatives sont confondus alors la molécule est apolaire et donc hydrophobe.







Les fluorocarbures sont des molécules polymères qui présentent une symétrie par rapport à la chaîne carbonée. La polarisation d’une liaison C ( F d’un côté de la chaîne carbonée, est compensée par la polarisation de la liaison C ( F symétrique par rapport à l’axe de la chaine carbonée. Ainsi, globalement, les fluorocarbures sont des molécules apolaires. Elles sont donc hydrophobes.
 EMBED Equation.DSMT4 

 EMBED Equation.DSMT4 

 EMBED Equation.DSMT4 

 EMBED Equation.DSMT4 

 EMBED Equation.DSMT4 

 (5789[\pqs}Š›ž¦§¨­´µ·¾ËÎÒרÙÚîï÷ï÷çâç÷ÚÖÚÌÀ÷»â³â³â³«¦ž™’ŽŠŽ†ŽyŽng^gh¢cÇhª£EHüÿ h¢cÇhª£jh¢cÇhª£Uhª£h¢cÇ5B*phÿhÙ-ûhª£h¢cÇ h¢cÇh¢cÇ håz5h*s>h*s>5 hw_£5h1cþhÆÃ5hÆÃhÆÃ5 h L5jh“t0J5Uh Lhbk 0J5h“tjh“tU h¢cÇ5h Lhén5h Lh L5h Lhbk 5$s§¨Î y 










Ø®©¡–––ŽŽŽŽŽŽŽŽŽ$a$gdP. $
& Fa$gdÙ-û$a$gd*s>gdw_£)$$d%d&d'dNÆÿOÆÿPÆÿQÆÿa$gd1cþ&$d%d&d'dNÆÿOÆÿPÆÿQÆÿgdbk ïðñò  / 0 1 2 F G H I J U m w y |   ‘ ’ ¦ § ¨ ñäÙÕÑĹ®§ž§ƒ®ÑÕÕÑrg®§^§Pj¡eU
h¢cÇhÈUVh¢cÇhÈEHöÿhª£h¢cÇB* ph°Phª£h¢cÇ5B* ph°PhÂI&jñh¢cÇhÈEHüÿUjœ¡eU
h¢cÇhÈUVh¢cÇhÈEHüÿ h¢cÇhÈjh¢cÇhÈUhª£h¢cÇB*phÿhª£h¢cÇ5B*phÿh¢cÇhÙ-ûjh¢cÇhª£Ujh¢cÇhª£EHüÿUj›¡eU
h¢cÇhª£UV¨ © ª « Á Ó Ý 







'
*
—
˜
ž
¡
¢
£
·
¸
¹
º
»
î
   ' ( ) òçãßÛ×ÛßÉÅÉÅÁ¹´°Å¬ÁÅ¡š‘šƒv¡År¡š‘šdj¤¡eU
h†h†UVh†jóh†h†EHôÿUj£¡eU
h†h†UVh†h†EHôÿ h†h†jh†h†Uh