Td corrigé equilibre d'un solide mobile autour d'un axe - Exercices corriges pdf

equilibre d'un solide mobile autour d'un axe - Exercices corriges

EQUILIBRE D'UN SOLIDE MOBILE AUTOUR D'UN AXE. I MOMENT D'UNE FORCE. 1° Expérience 1. Dans chacun des 5 cas, prévoir ce qu'il va se passer et  ...




part of the document








3° Définition

d





 EQ \o(\s\up7(\d\fo2() SYMBOL 190\f Symbol \s5\h  SYMBOL 190\f Symbol \s5\h  SYMBOL 174\f Symbol \s5\h );F)

A


* O
II THEOREME DES MOMENTS
1° Expériences
On suspend des poids différents à des distances variables afin que
le système soit en équilibre et on note les résultats obtenus.
P1 (N)0.50.50.10.1P2 (N)0.50.10.50.1d1 (m)0.10.210.3d2 (m)0.110.20.3M1=P1.d1M2=P2.d2
Calculer les divers moments M1 et M2.

On réalise la même expérience mais avec 5 poids que l'on place
de part et d'autre de l'axe.

P1 (N)0.5d1(m)0.4M1P2 (N)0.2d2(m)0.3M2.P3 (N)0.1d3(m)0.1M3P4(N)0.3d4(m)0.4M4P5 (N)0.4d5(m)0.375M5
Comparer la somme des moments des forces qui font tourner
dans un sens et la somme des moments des forces qui font tourner
dans l’autre sens .


2° Théorème







IV APPLICATIONS
1° Le treuil 2° La poulie


V EXERCICES
1° Dans les deux cas l'opérateur exerce une force de 1 daN.
Quel est le mouvement provoqué par les deux forces ? Quelle position vous parait-elle la plus efficace ?pourquoi ?





2° Sur la figure ci-dessous P désigne le poids de la brouette  EQ \o(\s\up7(\d\fo2() SYMBOL 190\f Symbol \s5\h  SYMBOL 190\f Symbol \s5\h  SYMBOL 174\f Symbol \s5\h );F)
et de sa charge. G représente le centre d'inertie de la brouette
chargée. F est la force verticale exercée par la personne qui
travaille ; l'ensemble est en équilibre et le sol horizontal. G
On donne P = 900 N, d1 = 50 cm et d2 = 90 cm.
Calculer l'intensité de la force F.  EQ \o(\s\up7(\d\fo2() SYMBOL 190\f Symbol \s5\h  SYMBOL 190\f Symbol \s5\h  SYMBOL 174\f Symbol \s5\h );P)

d1 d2


3° Une barre AB de masse négligeable de longueur l = 1m repose sur un axe horizontal O. On accroche en A et B les charges mA et mB. On donne OA = 75 cm, OB = 25 cm, mA = 0,6 kg. Quelle doit être la valeur de mB pour que la barre soit en équilibre ?
A O B




mA mB


4° La barre AB, homogène de longueur AB = 1 m
de poids P = 40 N est en équilibre dans la position horizontale, comme le montre la figure. OA= 20 cm.

a) Quelle doit être la valeur de P’ pour que
l'équilibre soit réalisé ?

b) Le poids P’ vaut alors 10 N, on place une
surcharge en A. Quelle doit être sa valeur ?



5° Une benne basculante 1 est articulée en C sur
le châssis 3 d’un camion. Cette benne est manœuvrée
par un vérin 2 articulé en A sur le camion et en B sur
la benne. le poids de la benne et de la charge est
P = 60 kN et G est le centre de gravité de l’ensemble.
Dans la position indiquée, déterminer par le calcul
l’intensité de la force exercée par le vérin
( théorème des moments ).





6° Un mât 1 de poids P = 5000 N de 10 m de longueur est
articulé en O par un axe 3 ; il est maintenu en équilibre par le
câble AB noté 2.
Faire le bilan des actions s’exerçant sur le mât puis déterminer
par le calcul l’intensité de la tension du
câble ( théorème des moments ) .



7° Une barre AB de longueur l = 2 m et de poids P = 1000 N est
articulée en A sur un mur vertical. Elle est maintenue en équilibre
par un câble BC de masse négligeable. Faire le bilan des actions
s’exerçant sur la barre puis déterminer par le calcul
l’intensité de la tension du câble ( théorème des moments ) .










8° Un portillon 1 a un poids P = 800 N, il repose en B
sur une crapaudine 2 et est maintenu en position par le
collier 3. On admettra que l’action du collier sur le portillon
s’exerce en A suivant l’horizontale.
Faire le bilan des actions s’exerçant sur le portillon puis
déterminer par le calcul l’intensité de la force exercée
par le collier ( théorème des moments ) .







9° Déterminer la force F horizontale appliquée au centre O
d’un rouleau de poids P = 5000 N et de rayon R = 30 cm pour
franchir un obstacle de hauteur h = 8 cm.






10° Le pont-levis est mobile autour de l’axe horizontal O.
Il est constitué d’un plateau de poids P = 5000 N et dont le
centre d’inertie G est au milieu de OA. Il est maintenu en
équilibre, dans la position correspondant à ( = 60,
grâce au contre poids C et à la corde ABC dont on néglige
la masse. OA = OB = 4 m. Calculer la tension T de la corde
dans ces conditions, puis sa tension T’ lorsque le pont est
abaissé mais sans reposé.




11 ° Soit un treuil de masse M = 20 kg ; il permet de soulever
une charge de 1200 N. déterminer le module de la force F qu’il
faut exercer perpendiculairement à OA pour soulever la charge.




NOM Date
Prénom Classe
_________________________________________________________________________________________

_________________________________________________________________________________________
 EMBED Draw 

1° Faire le bilan des actions s'exerçant sur la console OA.

*

*

*

2° Sur la figure ci-dessus, tracer la direction de ces forces.

3° Déterminer les caractéristiques de ces forces lorsque cela est possible.

ACTION
P ADIRECTIONSENSINTENSITENOTATION



5° Sur un deuxième graphique, construisez
le dynamique des forces. Echelle : 1 cm / 500 N.

6° Déterminer une des intensités manquantes
avec le théorème des moments










NOM Date
Prénom Classe
_________________________________________________________________________________________

_________________________________________________________________________________________

I Un mobile est constitué de 3 poulies solidaires entre elles pouvant tourner autour du même axe. On attache un fil à chaque poulie et une masse .

 EMBED Draw 


1° Le solide est il en équilibre ? .....

* S'il ne l'est pas, dans quel sens tourne t-il ? 1 ou 2 ? pourquoi ?


2° Par quelle masse devrait-on remplacer M2 pour qu'il soit en équilibre ?




3° Si M2 était toujours égale à 300 g, à quelle distance de l'axe R3 devrait-on attacher M3 ?








II Soit un treuil permettant de soulever une charge P de 1500 N. O A
Déterminer l’intensité de la force F qu’il faut exercer perpendiculairement R
à OA pour soulever la charge sachant que OA = 120 cm et R = 30 cm
F






1500 N




III Une barre AB a une masse de 2 kg. Elle est mobile autour de l'axe situé en O.
On donne AO = 40 cm et AB = 120 cm
 EMBED Draw 

1° Quel est le poids P de la barre ? On prendra g = 10 N/kg.




2° Quel doit être le poids Pb de la charge appliquée en B afin que la barre soit en équilibre ?






3° On place une charge PA en A de 2 N, quel doit être le nouveau poids Pb pour que le barre soit en équilibre ?








  eq \o(\s\up7(\d\fo2() Symbol 190\f Symbol \s5\h  Symbol 190\f Symbol \s5\h  Symbol 174\f Symbol \s5\h );F)



IV Sur la figure ci-dessous P désigne le poids de la brouette A
et de sa charge. G représente le centre d'inertie de la brouette G
chargée. F est la force verticale exercée par la personne qui
travaille ; l'ensemble est en équilibre et le sol horizontal.
On donne P = 800 N, d1 = 60 cm et F = 200 N
Calculer la distance d2. O  EQ \o(\s\up7(\d\fo2() SYMBOL 190\f Symbol \s5\h  SYMBOL 190\f Symbol \s5\h  SYMBOL 174\f Symbol \s5\h );P)
d1 d2