Université Africaine d’Adrar

Faculté des Sciences et Sciences de l’Ingénieur

Département des  Mathématiques et de l’Informatique


Janvier 2008
2ème Année Informatique

Module : Algorithmiques et Structures de Données 1

Examen Final
Partie I : Vrai ou Faux (7.5 points)
- La réponse par plus de 5 Vrai ou 5 Faux successifs vaut « un zéro » pour toute la partie.
- Les complexités requises dans les questions ci-dessous sont considérées toujours dans le pire des cas.

1. L’allocation mémoire d’un tableau est statique dans la plupart des langages de programmation.

2. La représentation en mémoire d’un tableau multidimensionnel est monodimensionnelle.

3. Dans le langage C, la primitive malloc() sert à ajouter un élément une liste chaînée.

4. Dans le langage C, on utilise la valeur de NULL pour rendre une liste chaînée vide.

5. La pile est une liste chaînée où on insert/retire un élément depuis le sommet.
6. La file utilise obligatoirement deux pointeurs tete et queue pour qu’on puisse insérer ou retirer des éléments.

7. La complexité d’insertion ou de suppression dans une pile/file est ((1).

8. Selon l’implémentation, La complexité de vider une pile/file de n éléments est de ((1).

9. La complexité pour calculer la taille d’une pile/file de n éléments est ((n).
10. La complexité de recherche d’un élément dans une pile/file de n éléments est ((lg n).

11. Si la fonction CAR est appliquée sur la liste (A (B C) (D (E F))), on reçoit la liste (A).
12. Si la fonction CDR est appliquée sur la liste (A (B C) (D (E F))), on reçoit la liste ((B C) (D (E F))).

13. La collision entre les clés est un inconvénient majeur pour le hachage par division.
14. Afin de résoudre le problème de collision, on utilise une fonction bijective dans l’adressage fermé.

15. L’adressage ouvert essaie d’assurer la distribution des clés sur la table de hachage.

16. Dans l’adressage quadratique, le nombre possible des cellules pour stocker une clé égale (au moins) à la moitié des cellules existantes.
17. Le parcours pré-ordre d’un arbre binaire de recherche nous affiche une liste triée par ordre décroissant.
18. Le parcours en-ordre d’un arbre binaire de recherche nous affiche une liste triée par ordre croissant.
19. Le parcours post-ordre d’un arbre binaire de recherche nous affiche une liste non triée (en général).
20. La complexité d’insertion dans un arbre binaire de recherche de n éléments est O(lg n).

21. La complexité de suppression dans un arbre binaire de recherche de n éléments est O(n).

22. La hauteur d’un arbre binaire de recherche de n éléments égale à 
[image: image1.wmf]ë

û

n

lg

.

23. La complexité de rééquilibrage, après une insertion, dans un arbre AVL de n éléments est O(n).
24. La complexité de rééquilibrage, après une insertion, dans un arbre BB de n éléments est O(lg n).

25. La complexité de rééquilibrage, après une insertion, dans un arbre bicolore de n éléments est ((1).

26. L’invariant de boucle doit être valide avant l’exécution de la boucle.
27. La phase de terminaison ne fait pas partie de la démonstration de la validité de l’invariant.

28. La complexité de l’algorithme tri par tas de n éléments est O(2 n lg n).

29. La complexité de l’algorithme tri bulle d’une liste triée (en ordre croissant) de n éléments est ((n).

30. La complexité de l’algorithme tri par sélection d’une liste triée (en ordre décroissant) de n éléments est O(n2).

Partie II : (12.5 points)
Exercice 1 : Hachage (3 points)
On désire de stocker des entiers en utilisant le mode adressage ouvert quadratique, où hi(k) = ( k + i2) mod m.

1. Pour m = 7, citez toutes les différentes permutations hi(k) pour la clé k = 8.

2. Insérer les entiers suivants dans un tableau de 7 cellules : 8, 10, 15, 18, 19, 25, 31.

Exercice 2 : Arbres (4,5 points)

Insérer la liste [1, 2, 3, 4, 5, 6, 7] dans un arbre AVL, un arbre BB et un arbre bicolore. Elaborer, en détails, les étapes d’insertion pour chaque arbre.

Exercice 3 : Complexité (3 points)

 Soit la fonction H suivante :

H(a, b : Entier)

Debut


Si a = b Alors Ecrire(a)

Sinon Si a > b Alors

Debut



H(a, a + (b – a)/3)



H(a + (b - a)/3 + 1, a + 2*(b - a)/3)



H(a + 2*(b - a)/3 + 1, b)


Fin

Fin

1- Quelles sont les valeurs affichées à la fin d’exécution de H(1, 6) ? 

2- En déduire la complexité (borne approchée) de H(1, n).
3- Trouver (avec démonstration) une borne approchée pour la complexité de la fonction H(1, n). Conseil : On peut considérer T(n) comme le temps d’exécution requis pour terminer H(1, n).
Exercice 4 : Exactitude (2 points)

Soit l’algorithme suivant qui calcule le minimum d’un tableau de 10 entiers :

T : Tableau(10) de Entier
i, min : Entier

Debut
Pour i ( 1, 10 Faire


Lire(T[i])

min ( T[1]

Pour i ( 2, 10 Faire


Si min > T[i] Alors min ( T[i]
Ecrire(min)
Fin
· Trouver un invariant de boucle utile, et démontrer l’exactitude de cet algorithme.
Bonne Chance !!

-2/2-

_1259485134.unknown

