Td corrigé MAT-P103-2 - Formation EDA pdf

MAT-P103-2 - Formation EDA

Le diagramme de Venn est une représentation graphique d'un ensemble ou de ..... Une fois complété, montrez votre travail à votre enseignant afin qu'il le corrige . ...... Voici les notes obtenues au dernier examen de mathématique par les 10 ...




part of the document












Classements ensemblistes et statistiques
Document d’accompagnement
Version B

Hiver 2011




Stéphanie Guérin, enseignante
Monique Cloutier, conseillère pédagogique








Présentation du cours
Classements ensemblistes et statistiques
MAT-P103-2


Le but du cours Classements ensemblistes et statistiques est de vous rendre apte à traiter avec compétence des situations de vie où vous aurez à résoudre des problèmes liés aux classements de données.

Vous serez ainsi préparé à utiliser les notions ensemblistes et les statistiques de base dans des situations de vie qui présentent plusieurs données déjà classées ou à classer. Vous utiliserez entre autres votre raisonnement logique pour classer ces données dans différents tableaux et diagrammes. Vous vous familiariserez ainsi avec quelques représentations statistiques simples : 

les tableaux de caractères
les tableaux d’effectifs
les tableaux de fréquences
les pictogrammes
les diagrammes à bandes


Au terme de ce cours, vous pourrez donc interpréter et produire des classements ensemblistes et statistiques de données de tous genres (objets, fichiers, concepts, résultats d’un sondage, résultats scolaires, etc.). Vous utiliserez avec rigueur les modes de représentation appropriés pour communiquer ces classements. Vous effectuerez des déductions et des inductions qui s’appuieront principalement sur une logique ensembliste. Vous serez donc apte à interpréter les représentations statistiques de manière rationnelle et critique.

Tout ce travail permettra de mieux comprendre les représentations statistiques présentées dans les médias ou dans tout autre type de document retrouvé dans la vie courante.








Savoirs essentiels




Dossier 1: Les ensembles


Classements
Relation d’appartenance et de non-appartenance à un ensemble
Classements à l’aide d’ensembles (liste, dessin)
Représentation d’ensembles en extension
Représentation d’ensembles à l’aide d’un diagramme de Venn
Sous-ensemble d’un ensemble
Relations d’inclusion et d’exclusion










Dossier 2 : Distributions statistiques

Donnée (quantitative discrète ou qualitative)
Axe
Légende
Moyenne
Lecture de représentations statistiques : tableaux de caractères

Lecture de représentations statistiques : tableaux de fréquences et d’effectifs

Lecture de représentations statistiques : diagramme
à bandes

Lecture de représentations statistiques : pictogramme
Construction de tableaux de caractères, de fréquences
et d’effectifs

Représentation graphique de distributions statistiques
(diagramme à bandes et pictogramme)

Calcul de la moyenne à partir des données d’une
distribution statistique






Cours MAT-P103-2











Un petit jeu, ça commence bien une nouvelle notion!




« Trouver l’intrus », ça vous dit quelque chose?
Cherchez bien dans vos souvenirs, vous y avez sans doute déjà joué, que ce soit à l’école primaire, dans une revue ou dans un grand livre de jeux …

Et si vous y jouiez encore!
Dans les énoncés suivants, essayez de trouver l’intrus, c’est-à-dire l’élément qui ne devrait pas se trouver parmi les autres.

Consignes :

Encerclez l’intrus.
Expliquez votre choix dans vos propres mots.

N.B.(Stratégie) Pour raisonner avec logique, on doit ici se demander quelle est la caractéristique commune de chaque groupe et ensuite on pourra connaître l’élément intrus.

Voici les différents énoncés. 
Automobile, bicyclette, hélicoptère, train, camion et tracteur

Réponse : _____________________________________

2) Automobile, bicyclette, tracteur, hélicoptère et autobus
Réponse : _____________________________________

3) Fusée, avion, hydravion, hélicoptère, bateau à moteur et
canot

Réponse : _____________________________________

4) canot, bicyclette, pédalo, kayak, patins à roues alignées et scooter

Réponse : _____________________________________

5) camion, tracteur, bateau à voiles, scooter, autobus, bateau à moteur

Réponse : _____________________________________
Quelle caractéristique est commune à TOUS les éléments dans les énoncés?
________________________________________________________________________________________________
Quelles sont les différences?


Pourrions-nous dire alors qu’il y avait des sous-catégories? Lesquelles?______________________________________
________________________________________________



On peut conclure que tous les éléments faisaient partie de la grande catégorie (classe) des moyens de transport. Chacun d’eux avait cependant des particularités qui pouvaient nous amener à les classer dans une sous-catégorie (dans les airs, sur terre, sur l’eau) ou dans une autre sous-catégorie (à moteur, avec force physique), etc. Un peu comme les petites Poupées russes qui s’emboîtent les unes dans les autres.

Moyens de transport






Le dossier 1 sur les ensembles vous permettra de démêler un peu tout ça. Vous apprendrez à classer des éléments et à les représenter de différentes façons, ce qui rendra la lecture d’ensembles plus claire et compréhensible.
Bon cours!













Dossier 1 :

Classements ensemblistes












Classements ensemblistes

Introduction
Que ce soit à la maison, au travail, dans notre auto; le matin, le soir; en écoutant la télévision ou en cuisinant, nous devons classer différents objets afin de mieux les comprendre, de mieux les retrouver et de rendre leur utilisation plus efficace.

Nous sommes donc amenés à créer différents ensembles.
Par exemple :
le coffre à outils contient l’ensemble de nos outils (vis, tournevis, clous, marteau…)
la trousse à cosmétiques contient l’ensemble de notre maquillage
le classeur contient l’ensemble de nos factures, etc.
etc.
Cette façon de procéder nous facilite grandement la tâche puisqu’il est plus rapide d’avoir accès aux différents éléments.
  
En mathématiques, on donne le nom d’ENSEMBLE à un groupe d’objets, de mots, de nombres, etc. Et il existe différentes façons de les classer et de les regrouper. C’est ce que vous découvrirez tout au long de ce chapitre.













Classement, appartenance et non-appartenance à un ensemble

Julie est une jeune fille bien ordonnée. Son appartement est toujours en ordre. Chaque objet a une place bien précise, car elle aime que tout soit facile à retrouver, et ce, rapidement.

Par exemple :
Dans le garde-manger, elle range uniquement les boîtes de conserve, les pâtes alimentaires, le riz, les céréales et les biscuits.
Dans un grand tiroir de sa cuisine, elle range le papier d’aluminium, les emballages en plastique et les essuie-tout. Le pain a sa place spécifique sur le comptoir de la cuisine dans une belle boîte à pain en bois. Et bien entendu, elle conserve toujours ses aliments périssables dans le réfrigérateur.

En langage mathématique, nous pourrions dire que les boîtes de conserve appartiennent au garde-manger.
Le lait appartient au réfrigérateur.
Les essuie-tout appartiennent au tiroir de la cuisine.

Nous pourrions aussi dire que les céréales n’appartiennent pas au réfrigérateur.
Les biscuits n’appartiennent pas au tiroir de la cuisine.

Appartient : fait partie de…
N’appartient pas : ne fait pas partie de …
Voici le symbole mathématique pour dire qu’un élément appartient à un ensemble : (
Voici le symbole mathématique pour dire qu’un élément n’appartient pas à un ensemble : (

Julie revient justement de l’épicerie et aurait besoin de votre aide pour ranger ses achats.
En vous référant à la méthode de classement de Julie, triez les aliments suivants et placez-les au bon endroit.

Liste d’épicerie
laitue, lait, maïs en conserve, boîte de riz, biscuits aux pépites de chocolat, tomates, fromage, sacs « Ziploc » en plastique, papier essuie-tout, fruits en conserve, papier d’aluminium, viande, biscuits soda.

Appartient au réfrigérateur :
¤
¤
¤
¤
¤
Appartient au tiroir :
¤
¤

Appartient au garde-manger :
¤
¤
¤
¤
¤
Description d’un ensemble en extension

Il est aussi possible en langage mathématique de représenter des ensembles, des groupes, en EXTENSION.

Reprenons ce que l’ensemble du réfrigérateur contenait :
Appartient au réfrigérateur :
¤ Lait
¤ Laitue
¤ Tomates
¤ Fromage
¤ Viande

Voici la description en EXTENSION de cet ensemble :
R : {laitue ; tomates ; lait ; fromage ; viande}

Pour représenter cet ensemble en EXTENSION, il suffit :

de désigner une lettre pour l’ensemble. Pour cet exemple nous prendrons « R » pour réfrigérateur
d’y ajouter « : » et ouvrir une accolade « { »
d’y inscrire en lettres tous les éléments séparés par un « ; »
et de fermer l’accolade « } »
R : {laitue ; tomates ; lait ; fromage ; viande}

À votre tour d’essayer!

Activité 1

Représentez en extension les ensembles suivants :
Exemple : les saisons de l’année
S : {été; automne; hiver; printemps}
Les voyelles de l’alphabet.



Les nombres pairs situés entre 10 et 30.



Les mois de l’année ayant 31 jours.



Les consonnes dans le mot PARABOLES.



Les matières scolaires que vous avez au Centre.





Activité 2

Complétez les affirmations, à l’aide du symbole ( (appartient) et ( (n’appartient pas) à l’ensemble donné.

Dans l’ensemble P : {0;2;4;6;8;10}
4 ______ P
7 ______ P
0 ______ P

Dans l’ensemble V : {a;e;i;o;u;y}
B ______ V
O ______ V
I ______ V

Dans l’ensemble F : {framboise; fenouil; fraise; fèves}
Framboise ______ F
Pomme ______ F
Figue ______ F

Dans l’ensemble C : {2(;3(; 4(; 5(; 6(; 7(; 8(; 9(;10(}
5( ______ C
5( ______ C
8( ______ C


Activité 3

Décrivez en extension l’ensemble N des nombres compris entre 2 et 18.


Maintenant, en lien avec l’ensemble que vous venez de décrire, dites si les affirmations suivantes sont vraies ou fausses.

20 ( N _______________
3 ( N _______________
4 ( N _______________
11 ( N _______________
16 ( N _______________



Avant de passer à la notion suivante, voici un petit rappel de la signification des symboles ( et (.

( = « appartient à », « est élément de », « est dans »
-----------------
( = « n'appartient pas », « n'est pas élément de », « n'est pas dans »


Diagramme de Venn

Reprenons l’exemple de Julie.
Julie aime que tout soit en ordre, que tout soit rangé à la bonne place.
Sa meilleure amie, Sophie, a décidé d’emménager avec elle. Comme Julie est une fille ordonnée, elle décide de lui montrer par un dessin où vont certains articles.
Voici le dessin illustrant ce que contient le garde-manger:

G-M
 SHAPE \* MERGEFORMAT 

En langage mathématique, on dit que la représentation (le dessin) est faite sous forme de diagramme de Venn.





Un peu d’histoire!

Cette forme a été conçue par un mathématicien britannique, John Venn.
ou 

John Venn, ( HYPERLINK "http://fr.wikipedia.org/wiki/4_ao%C3%BBt" \o "4 août" 4  HYPERLINK "http://fr.wikipedia.org/wiki/Ao%C3%BBt" \o "Août" août  HYPERLINK "http://fr.wikipedia.org/wiki/1834" \o "1834" 1834 à  HYPERLINK "http://fr.wikipedia.org/wiki/Kingston-upon-Hull" \o "Kingston-upon-Hull" Hull –  HYPERLINK "http://fr.wikipedia.org/wiki/4_avril" \o "4 avril" 4  HYPERLINK "http://fr.wikipedia.org/wiki/Avril" \o "Avril" avril  HYPERLINK "http://fr.wikipedia.org/wiki/1923" \o "1923" 1923 à  HYPERLINK "http://fr.wikipedia.org/wiki/Cambridge" \o "Cambridge" Cambridge), est un  HYPERLINK "http://fr.wikipedia.org/wiki/Math%C3%A9maticien" \o "Mathématicien" mathématicien et logicien  HYPERLINK "http://fr.wikipedia.org/wiki/Royaume-Uni" \o "Royaume-Uni" britannique, célèbre pour avoir conçu les  HYPERLINK "http://fr.wikipedia.org/wiki/Diagramme_de_Venn" \o "Diagramme de Venn" diagrammes de Venn, lesquels sont employés dans beaucoup de domaines, en  HYPERLINK "http://fr.wikipedia.org/wiki/Th%C3%A9orie_des_ensembles" \o "Théorie des ensembles" théorie des ensembles, en  HYPERLINK "http://fr.wikipedia.org/wiki/Probabilit%C3%A9" \o "Probabilité" probabilité, en  HYPERLINK "http://fr.wikipedia.org/wiki/Logique" \o "Logique" logique, en  HYPERLINK "http://fr.wikipedia.org/wiki/Statistique" \o "Statistique" statistique et en  HYPERLINK "http://fr.wikipedia.org/wiki/Informatique" \o "Informatique" informatique.
John Venn a présenté les diagrammes portant son nom en  HYPERLINK "http://fr.wikipedia.org/wiki/1881" \o "1881" 1881. En  HYPERLINK "http://fr.wikipedia.org/wiki/1883" \o "1883" 1883, il a été élu membre de la  HYPERLINK "http://fr.wikipedia.org/wiki/Royal_Society" \o "Royal Society" Royal Society.



Diagramme de Venn
Définition :
Le diagramme de Venn est une représentation graphique d’un ensemble ou de plusieurs ensembles.

Voici les étapes à suivre pour représenter un ensemble sous forme de diagramme de Venn :
1. Tracez un cercle, un carré, un rectangle, etc. Bref, tracez une figure fermée.
2. Nommez l’ensemble par une lettre majuscule, comme vous l’avez fait pour la description en extension.
3. Placez cette lettre majuscule à l’extérieur de votre figure fermée, mais assez près de celle-ci.
4. Placez à l’intérieur de votre figure fermée, les différents éléments qui composent votre ensemble. Vous devez les écrire en lettres minuscules et placer un point près de votre élément le plus souvent à gauche de celui-ci. Il n’y a pas d’ordre pour placer les éléments, mais il est important de n’écrire l’élément qu’une seule fois.




Voici un exemple.
Nous allons représenter l’ensemble des voyelles de notre alphabet.
Cet ensemble est composé de a,e,i,o,u,y.
Étape 1 : Tracer la figure fermée.
 SHAPE \* MERGEFORMAT 
Étape 2 : Nommer l’ensemble = V (pour voyelles) et l’inscrire à côté de la figure fermée.
V


Étape 3 : Placer les différents éléments de l’ensemble à l’intérieur de la figure fermée.
V . a .e .y
.i .o .u

Voilà le produit final! Nous avons représenté sous forme de diagramme de Venn l’ensemble des voyelles de notre alphabet.
Mise en situation 1 
Aidez Julie à expliquer à sa colocataire où vont les produits achetés à l’épicerie, sous forme de diagramme de Venn.

Liste d’épicerie
laitue, lait, maïs en conserve, boîte de riz, biscuits aux pépites de chocolat, tomates, fromage, sacs « Ziploc » en plastique, papier essuie-tout, fruits en conserve, papier d’aluminium, viande, biscuits soda.

1. Construisez 3 cercles (diagramme de Venn) et identifiez chaque cercle par la première lettre qu’il représente.
Exemple : G-M pour garde-manger
____ pour réfrigérateur
____ pour tiroir

2. Écrivez à l’intérieur de chaque cercle les éléments de la liste d’épicerie qu’il comporte.











Exercices
Décrivez sous forme de diagramme de Venn les ensembles suivants :

1. L’ensemble des mois de l’année ayant 28 jours.








2. L’ensemble des lettres du mot MAISON.












3. L’ensemble de toutes les voyelles de l’alphabet.








4. L’ensemble des cartes de la série (.








5. L’ensemble des mois de l’année qui contiennent la lettre « R »








L’ensemble des consonnes du mot « ESSENTIEL »







7. L’ensemble des chiffres contenus dans le nombre « 169 656 »










Voici un diagramme de Venn représentant plusieurs nombres.

N
 SHAPE \* MERGEFORMAT 
1. Indiquez si les affirmations concernant le diagramme de Venn N sont vraies ou fausses.

a) 7 ( N __________
b) 46 ( N __________
c) 60 ( N __________
d) 25 ( N __________
e) 111 ( N __________





2. Représentez par un diagramme de Venn que vous nommerez P, l’ensemble des mois de l’année qui comptent 30 jours ou moins.






3. À l’aide des symboles appropriés, indiquez si les mois qui suivent sont des éléments ou non de l’ensemble représenté à l’exercice 2.

a) janvier __________ P
b) février __________ P
c) mars __________ P
d) avril __________ P
e) mai __________ P
f) juin __________ P
g) juillet __________ P
h) août __________ P
i) septembre __________ P
j) octobre __________ P
De façon générale, il est possible de représenter un même ensemble de plusieurs façons. Il est donc possible de représenter l’ensemble des voyelles de l’alphabet français soit par extension, soit par un diagramme de Venn. Les deux façons sont tout aussi bonnes.

Voici la représentation en extension de l’ensemble V des voyelles de l’Alphabet français :
V = {a,e,i,o,u,y}


Voici la représentation par diagramme de Venn du même ensemble V, soit les voyelles de l’alphabet français.
 V
.a .e
.i .o
.u .y


On peut facilement passer d’une représentation à l’autre. À vous de choisir celle qui vous plaît le plus.




Petit récapitulatif des notions vues jusqu’à présent.

1. Une représentation en extension d’un ensemble, c’est _________
______________________________________________________.

2. Représenter sous forme de diagramme de Venn un ensemble, c’est __________________________________________________.

Exercices
Décrivez en extension les ensembles représentés sous forme de diagramme de Venn :

a) C ___________________________



T

b) ___________________________






Décrivez sous forme de diagramme de Venn les ensembles représentés en extension :

G = {c, j, g, m, s}






M = {c,h,a,l,e,t}







c) V = {(, (,(, (}








Répondez aux questions suivantes.

Quel signe utilise-t-on pour indiquer qu’un élément appartient à un ensemble donné? _______________

Est-il possible de représenter un ensemble par un diagramme de Venn en utilisant comme figure fermée le CARRÉ? ______________

Comment doit-on écrire les éléments d’un ensemble par extension? En lettres majuscules ou en lettres minuscules? _________________

Qui a inventé le diagramme de Venn? ________________________















Sous-ensemble d’un ensemble

 INCLUDEPICTURE "http://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Venn_A_subset_B.svg/150px-Venn_A_subset_B.svg.png" \* MERGEFORMATINET 
L' HYPERLINK "http://www.techno-science.net/?onglet=glossaire&definition=2447" ensemble A est inclus dans l'ensemble B.
On dit que A est sous-ensemble de B.
En  HYPERLINK "http://www.techno-science.net/?onglet=glossaire&definition=2367" mathématiques, un ensemble A est un sous-ensemble ou une partie d’un ensemble B, si tout élément du sous-ensemble A est aussi élément du surensemble B. Il peut par contre y avoir des éléments de B qui ne sont pas éléments de A (voir le  HYPERLINK "http://www.techno-science.net/?onglet=glossaire&definition=2431" diagramme). La relation entre A et B s'appelle l'inclusion. Soit deux ensembles A et B. Par  HYPERLINK "http://www.techno-science.net/?onglet=glossaire&definition=6402" définition, A est inclus dans B si tout élément de A est un élément de B.
Pour dire que l’ensemble A est inclus dans l’ensemble B, nous utiliserons le symbole mathématique suivant : ( ð.

L'inclusion peut se dire de plusieurs façons. « A ( B » peut aussi se lire :
« A est contenu dans B »,
« A est une partie de B »,
ou « A est un sous-ensemble de B ».
Voici un exemple :
 SHAPE \* MERGEFORMAT 
L ensemble P est ( (inclus) dans l ensemble N.

Représentons les deux ensembles en extension.
N = {1,2,3,4,5,6,7,8,9}
P = {2,4,6,8}
On peut voir que tous les nombres de l’ensemble P se retrouvent dans l’ensemble N. Il est donc vrai d’affirmer que P est ( dans N.

Un peu de mise en pratique!

Voici la représentation en extension de l’ensemble de sports nautiques :

N = {bateau à voiles, canot, chaloupe, motomarine, planche à voile, bateau à moteur, kayak, pédalo}

Pour chacun des ensembles suivants, indiquez s’il est ou n’est pas un sous-ensemble (( ou () de N et dites pourquoi.

B = {bateau à moteur, chaloupe, canot}
B _________ N Pourquoi? __________________________

C = {canot, chaloupe, chariot}
C _________ N Pourquoi? __________________________

P = {pédalo}
P _________ N Pourquoi? __________________________

A = {bateau, motomarine, kayak, pédalo}
A _________ N Pourquoi? __________________________

M = {motomarine, motoneige, moteur, maillot}
M _________ N Pourquoi? __________________________


Exercices :

L’ensemble de référence est : M = {15, 20, 25, 30, 35}

a) Si l’autre ensemble est : C = {15, 25, 30}, l’affirmation suivante est-elle vraie? C ( M __________
Pourquoi?


b) Si l’autre ensemble est : J = {25, 20, 30, 15, 35}, l’affirmation suivante est-elle vraie? J ( M __________
Pourquoi?


c) Si l’autre ensemble est : K = {10, 15, 20, 25, 30, 35}, l’affirmation suivante est-elle vraie? K ( M __________
Pourquoi?












Situation d’apprentissage :

Les ensembles








Un zoo à Mont-Laurier?

Le domaine la « Ferme des Vents » offre depuis plus de 5 ans des visites guidées de ses lieux. Les jeunes et les moins jeunes adorent toucher et observer les différents animaux. Ils ont même l’occasion de les nourrir et de les soigner, sous la supervision du guide, bien entendu.

Depuis quelque temps, les propriétaires désirent agrandir leurs établissements et ainsi recevoir d’autres animaux, dont certains domestiques et d’autres plus exotiques. Ils veulent ainsi attirer un plus grand nombre de touristes. Ce qui serait un bon coup pour l’économie de notre région!

Cependant, ils ne connaissent pas les goûts et les intérêts des particuliers. C’est pourquoi ils demandent votre collaboration en remplissant le questionnaire qui suit. Ils pourront ainsi établir quels animaux sont les plus populaires et diversifier leur élevage.






Consignes

Répondez aux différentes questions qui vous permettront de faire un choix plus éclairé.
Complétez ensuite le dossier joint et remettez-le à votre enseignant qui le fera parvenir aux propriétaires.

Le but de votre travail est de permettre aux propriétaires de la « Ferme des Vents » de se faire une idée quant aux différents choix de la population. Ils le feront en compilant toutes les données des diagrammes qu’ils auront reçus.


Merci de prendre le temps de répondre au questionnaire!
Peut-être y aura-t-il réellement un Zoo à Mont-Laurier d’ici quelques années grâce à votre collaboration!








Questionnaire : Un Zoo à Mont-Laurier?


Répondez aux questions suivantes en tenant bien compte de vos goûts et de vos intérêts.

Quels animaux aimeriez-vous retrouver à la Ferme des Vents? Essayez d’en nommer au moins 20! Ils ne doivent pas être obligatoirement des animaux que l’on retrouve sur une ferme. Laissez libre cours à votre imagination!




Maintenant que votre choix est fait, représentez vos animaux sous forme de diagramme de Venn ou par extension. Vous pouvez vous référer à votre dossier sur les ensembles.














Pensez-vous qu’il serait possible de classer autrement les différents animaux que vous avez choisis? Pourriez-vous faire des sous-ensembles (des sous-catégories) ?

Si oui, comment? Essayez de l’expliquer dans vos propres mots.
____________________________________________________________________________________________________________________________________________________________________________________________________________________________


En fait, il existe 5 grandes classes d’animaux. À l’aide du dictionnaire, de livres ou de l’Internet, énumérez-les.

1) __________________
2) __________________
3) __________________
4) __________________
5) __________________


Maintenant que vous connaissez les 5 grandes classes d’animaux, comment procéderiez-vous pour reclasser ceux que vous avez choisis? Décrivez votre démarche en quelques mots.

_____________________________________________________________________________________________________________________________________________________________________

Est-ce que vos choix couvrent les 5 classes? _____________


* Attention! Stratégie! Souvent, il n’y a pas de bonnes ou de mauvaises réponses. Tout est dans la façon d’expliquer votre réponse.






Maintenant, à vous de représenter les 20 animaux séparés en 5 grandes classes, sous la forme de votre choix, c’est-à-dire à l’aide d’un diagramme de Venn, par extension ou par description en compréhension. Soyez le plus concis et le plus clair possible. Votre schéma sera transmis aux propriétaires de la « Ferme des Vents ».

Dès qu’ils auront reçu tous les diagrammes, ils pourront établir quels sont les animaux les plus populaires!


Veuillez représenter votre sélection dans le cahier-réponse qui suit. Une fois complété, montrez votre travail à votre enseignant afin qu’il le corrige.










































Le ___________________,


Monsieur et Madame Beauchamp,

Je suis honoré(e) de pouvoir participer à votre enquête.

Voici mes choix quant aux 20 animaux que j’aimerais retrouver sur votre domaine. Ils sont séparés en 5 grandes classes, c’est-à-dire :
1 __________ 2 __________ 3 __________
4 __________ 5 __________

J’ai choisi de représenter l’ensemble de ces 20 animaux, sous la forme de : __________________________________________.

J’espère que cela facilitera votre tâche quant au choix des animaux que vous intègrerez dans votre ferme.

Bien à vous,


Signé : _______________________________

______________ _______________
(Nom) (Prénom)





Voici mes choix :





























Dossier 2 :

Distributions statistiques








Distributions statistiques

Introduction

Dans le chapitre précédent, vous avez étudié différents types de classements, appelés des ENSEMBLES en langage mathématique.
Au cours des prochaines pages, vous apprendrez à représenter ces différents ensembles appelés des REPRÉSENTATIONS STATISTIQUES en langage mathématique.

Ce procédé vous permettra d’organiser un grand nombre de données en diverses méthodes de classements, sous forme de tableaux, d’histogrammes, de pictogrammes et de graphiques. Dans ce cours, vous étudierez principalement les tableaux de données, les tableaux de caractères, les tableaux de fréquences, les diagrammes à bandes horizontales et verticales ainsi que les pictogrammes.

Vous découvrirez donc au fil des leçons que la statistique est un outil fondamental dans de nombreux domaines tels que la démographie (étude sur le nombre d’habitants, la population), l’économie, les assurances, les résultats scolaires, les jeux de hasard, les sports (comme le hockey!), etc.




La statistique

Pourquoi faire de la statistique?

La statistique est née d’un besoin d’obtenir des informations chiffrées sur un phénomène ou un fait quelconque.
Elle permet de rassembler des renseignements, de les ordonner, de les analyser et de les représenter afin d’en tirer des conclusions ou des prévisions .
La statistique a son propre langage mathématique (vocabulaire). Voici quelques définitions reliées aux notions que vous apprendrez au cours des prochaines pages.

Vocabulaire statistique

Avant de pouvoir représenter vos données sous diverses formes, il vous serait bien utile d’en comprendre le vocabulaire particulier.
Voici donc quelques définitions importantes.

Définitions 

Statistiques : n.f. (2) ensemble de données d’observation relatives à un groupe d’individus ou d’unités. (Le Petit Larousse 2005)
Individus : ensemble d’objets équivalents pour lesquels on recueille des données (des mesures ou des observations) afin de faire la statistique.

Attention! Individu ne désigne pas toujours un ensemble
d’êtres humains.

Exemple : Si on étudie la production annuelle d’une usine de boîtes d’épinards, la population est l’ensemble des boîtes produites dans l’année et une boîte d’épinards constitue un individu.

Des individus très semblables en apparence possèdent souvent des caractéristiques distinctes. En statistiques, une caractéristique observée sur un individu est appelée VARIABLE ou CARACTÈRE.

Variable : les variables peuvent être de types très différents les unes des autres. Il est nécessaire de donner quelques définitions permettant de mieux préciser leur nature.


Variable QUANTITATIVE : une variable est dite quantitative lorsqu’elle est représentée par un NOMBRE.
Elle est dite quantitative DISCRÈTE lorsque les données prennent un nombre fini c’est-à-dire un nombre entier (1, 2, 33, 678, …).
Exemple : âge, nombre d’enfants, nombre d’absences des élèves, etc.


Truc : QUANTITATIVE = QUANTITÉ


Variable QUALITATIVE : une variable est dite qualitative lorsque les données peuvent être classées selon des types ou des qualités.
Exemple : couleurs des yeux, mets préférés, moyens de transport, etc.


Truc : QUALITATIVE = QUALITÉ


Effectif : nombre d’individus d’une population ou d’une partie quelconque de cette population.

Effectif total : c’est le nombre total d’individus.

Fréquence d’une donnée: c’est le nombre de fois qu’apparaît une donnée dans une distribution.

Axe : en géométrie, un axe est une droite graduée de façon régulière (comme votre règle).

 



Légende : c’est une explication jointe à une photographie, à un dessin, à un plan, à une carte, à un tableau, à un diagramme ou à un pictogramme.

Moyenne : la moyenne ou la tendance centrale d’un ensemble de données est une mesure qui marque la GRANDEUR des données. (source : Dictionnaire actuel de l’éducation 2005)
On trouve la moyenne en divisant la somme des données par le nombre de données dans la série.


Somme des données
MOYENNE = _________________
Nombre de données





Diagramme à bandes horizontales :




Diagramme à bandes verticales :




Pictogramme :


CHAPITRE 1

Distribution, objets quantifiés, données statistiques

Mise en situation :

Le 2 juillet dernier, plusieurs résidents d’une même rue ont décidé de faire une vente-débarras communautaire dont les profits iraient à un organisme de leur région. Le temps des calculs est arrivé, voici une liste des sommes d’argent que chacun a recueillies.

Famille Robert 150$
Famille Desjardins 230$
Famille Dumontet 155$
Famille Rocheleau 142$
Famille Bernard 256$

Cette liste en langage mathématique se nomme : DISTRIBUTION.

Dans cette distribution, nous retrouvons des OBJETS QUANTIFIÉS, c’est-à-dire, des objets sur lesquels porte l’expérience.
Pour cet exemple, les objets quantifiés sont : les sommes d’argent recueillies par les 5 familles.



Pour chaque objet quantifié, une DONNÉE STATISTIQUE est rattachée, c’est-à-dire une valeur, en général un nombre. Ici, les données statistiques sont les montants en $ associés à chaque famille.
En général, tout ce qui peut être quantifié, calculé, peut devenir une donnée statistique.

En résumé :

Distribution ’! liste.
Famille Robert 150$
Famille Desjardins 230$
Famille Dumontet 155$
Famille Rocheleau 142$
Famille Bernard 256$

Objets quantifiés ’! sommes d argent recueillies par chaque famille : famille Robert, famille Desjardins, famille Dumontet, famille Rocheleau, famille Bernard.

Données statistiques ’! les montants d argent associés à chaque famille : 150$, 230$, 155$, 142$, 256$.



À vous de jouer!

Mise en situation 1

Voici une liste montrant le nombre d élèves inscrits pour chaque niveau de l école primaire Aux 4 saisons.

Maternelle : 17
1re année : 21
2e année : 20
3e année : 24
4e année : 18
5e année : 26
6e année : 23

A. Quel titre donneriez-vous à cette distribution? ________________
_______________________________________________________
B. Quels sont les objets quantifiés ? __________________________
_______________________________________________________
C. Quelles sont les données statistiques? ______________________
_______________________________________________________




Mise en situation 2

Julie travaille dans une boutique de vêtements pour femmes depuis bientôt deux ans. À la fin de chaque semaine de travail, sa gérante dresse un bilan de ses ventes quotidiennes.
Voici la liste pour la semaine du 2 avril :

Lundi : 500$
Mardi : 625$
Mercredi : 300$
Vendredi : 1030$
Samedi : 2500$

A. Quel titre donneriez-vous à cette distribution? ________________
_______________________________________________________
B. Quels sont les objets quantifiés ? __________________________
_______________________________________________________
C. Quelles sont les données statistiques? ______________________
_______________________________________________________


CHAPITRE 2

Étendue d’une distribution

La gérante de Julie désire calculer la différence entre sa meilleure journée, c’est-à-dire celle où elle a vendu le plus d’argent et sa moins bonne, celle où elle a vendu le moins d’argent.
Reprenons les données de la distribution de la semaine du 2 avril.
Lundi : 500$
Mardi : 625$
Mercredi : 300$
Vendredi : 1030$
Samedi : 2500$

Pour l’aider à calculer, écrivez le montant $ associé à sa meilleure journée : __________________.
Maintenant, écrivez le montant $ associé à sa moins bonne journée : __________________.
Calculez la différence entre les deux.



La différence est de ___________$.

Voilà, vous venez de calculer l’étendue de cette distribution. Ce n’est pas plus compliqué que ça.
Étendue d’une distribution :

La plus grande donnée – la plus petite = étendue


Exercices :

1. Calculez l’étendue des distributions suivantes.

120 , 340 , 500 , 29 , 499 , 320 _________________________
2000, 1900 , 2001 , 3004 , 1901 ________________________
35 , 38 , 20 12 , 53, 44 ________________________________

2. Calculez l’étendue de cette distribution.

Titre : Sommes $ recueillies par les familles de la rue Hamel
Famille Robert 150$
Famille Desjardins 230$
Famille Dumontet 155$
Famille Rocheleau 142$
Famille Bernard 256$
Calcul :

L’étendue de cette distribution est de : ____________________.

CHAPITRE 3

Tableaux de données

Un tableau de données permet de résumer l’information recueillie lors d’une étude statistique.

Reprenons l’exemple des ventes de Julie.
Lundi : 500$
Mardi : 625$
Mercredi : 300$
Vendredi : 1030$
Samedi : 2500$

Étape 1
Tout d’abord, avant de dessiner le tableau, il est important de trouver un titre. C’est ce qui nous permettra de savoir de façon claire et brève la nature des informations du tableau.

Titre : ___________________________________

Étape 2
Dessiner un tableau à deux colonnes.
Étape 3
Pour chaque colonne, inscrire un sous-titre ou en-tête de colonne qui spécifie la nature des données.
JournéeSomme en $ des ventes
Étape 4
Inscrire les objets quantifiés dans la colonne de gauche et les données statistiques dans celle de droite selon l’ordre choisi (alphabétique, croissant, décroissant ou chronologique).

JournéeSomme en $ des ventesLundi500$Mardi625$Mercredi300$Vendredi1030$Samedi2500$ objets quantifiés données statistiques

Étape 5
Indiquer la source d’où proviennent les données au bas du tableau s’il y a lieu.
Voici le produit final :

Vente quotidienne de Julie pour la semaine du 2 avril

JournéeSomme en $ des ventesLundi500$Mardi625$Mercredi300$Vendredi1030$Samedi2500$Source : Magasin Chez Marie-Hélène

À vous de jouer!

Rappel des étapes pour la construction d’un tableau de données :

Formuler un titre
Dessiner un tableau
Inscrire les sous-titres
Inscrire les objets quantifiés et les données
Indiquer la source


Mise en situation 1

Un club de tennis désire établir un tableau de données récapitulatif de ses membres selon leur catégorie.
67 enfants étaient inscrits dans la catégorie benjamins, 88 dans la catégorie pupilles, 110 dans la catégorie minime et 129 dans la catégorie junior.

Construisez un tableau de données afin d’aider le club de tennis à mieux gérer ses effectifs. N’oubliez pas d’indiquer un titre à votre tableau.







1. Quel est l’effectif total du club? __________________________
2. Quel est l’effectif de la catégorie minime? ________________
3. Combien d’enfants ne jouent pas dans la catégorie benjamins? ____________________________________________


Mise en situation 2
Normand travaille pour une compagnie de transport. Il désire construire un tableau de données où serait inscrit le nombre d’heures qu’il a travaillées chaque jour. Lundi, il a travaillé 10 heures, mardi 9 heures, mercredi 12 heures, jeudi, il était en congé, vendredi il a fait 8heures et samedi 10 heures.

Construisez le tableau de données qui pourrait aider Normand à mieux connaître ses heures de travail hebdomadaire.














CHAPITRE 4
Tableaux de distribution de fréquences

Fréquence d’une donnée

Il arrive souvent, dans une distribution de données, qu’une même donnée revienne plusieurs fois, surtout lorsque le nombre d’objets quantifiés est assez élevé.
La fréquence d’une donnée est le nombre de fois qu’apparaît cette donnée dans une distribution.
Exemple :
Nous avons interrogé 16 personnes sur leur moyen de locomotion (voyagement) pour se rendre au centre de l’éducation des adultes de leur ville. Voici les résultats :
Pierre : voitureSuzie : voitureFrance : à piedsJean-Philippe : autobusSimon : à piedsClaude : autobusGilles : voitureFabrice : à piedsHugues : autobusDenis : à piedsRosie : à piedsJanick : à piedsLaure : autobusFélix : à piedsSylvain : à piedsNicole : autobus
Combien d’étudiants prennent l’autobus? ______________________
Combien d’étudiants prennent leur voiture? ____________________
Combien d’étudiants viennent au Centre à pieds? _______________

Les 3 nombres que vous venez d’inscrire soit : autobus 5, voiture 3 et 8 à pied, sont des fréquences.
Si nous avions à construire le tableau de fréquences de cette situation, il ressemblerait à ceci.

Titre: Moyens de locomotion des étudiants du Centre de l’éducation des adultes

Moyen de transportFréquenceAutobus5Voiture3À pieds8 Total : 16

Comme vous pouvez le constater, le tableau de distribution de fréquences se construit de la même façon qu’un tableau de données.





À vous de jouer maintenant!
Mise en situation 1 

L’infirmière scolaire a relevé le groupe sanguin des 20 élèves de 2e année.
Simon : ASoline : AStéphane : BSalima : ABStéphanie : OSylvain : ABSharon : OSéverine : OShawn : ASakou : OShaina : OSylvestre : AShakira : AShanelle : ASimon-Pierre : OSofia : BSarah : OSamy : BSophie : OSarah-Jade : O
Construisez un tableau de fréquences à l’aide des données ci-haut.










Mise en situation 2 

Laurence s’amuse à lancer un dé 50 fois de suite et elle a relevé à chaque fois le numéro sorti.
65663212143446112435653142431523224214115636126341
Construisez un tableau de fréquences en lien avec les données ci-haut.







Quelle est la fréquence du numéro 4? ________________________
Quelle est l’étendue de cette distribution? ______________________
Quelle est la fréquence du numéro 1 et du numéro 2 ensemble? ____



Mise en situation 3 

Une étude est faite auprès de 70 étudiants fréquentant le centre de l’éducation des adultes pour connaître le nombre d’enfants de chacun.

0341000423111000402111221000315111000201034101122211211000001012012011
Construisez un tableau de fréquences.










Mise en situation 4 

Voici un tableau de distribution de fréquences.

Nombre de médailles remportées par chaque pays lors de la compétition A le 12 avril 2009
PaysNombres de médaillesCanada10États-Unis15France5Mexique3Japon12Chine14Australie13
1. Quel pays a remporté le plus de médailles? _______________
2. Quelle est l’étendue de cette distribution? _________________
Calculs :


3. Combien de médailles ont été attribuées au total lors de cette compétition? ______________________ .
Calculs :



Mise en situation 5 

Observez le tableau et répondez aux questions suivantes.

Espérance de vie des hommes à la naissance, par province, de 2000 à 2002

ProvincesannéesTerre-Neuve-et-Labrador75Île-du-Prince-Édouard75Nouvelle-Écosse76Québec76Nouveau-Brunswick76Ontario77Manitoba76Saskatchewan76Alberta77Colombie-Britannique78Source : Statistique Canada, produit nº 84-537-XIE au catalogue

A. Dans quelle province retrouve-t-on la plus longue espérance de vie? _______________________.
B. Quelle est l’espérance de vie des hommes au Québec?
____________________ .
C. Combien de provinces ont une espérance de vie de 75 ans chez les hommes? __________________________.

Mise en situation 6 
Observez le tableau et répondez aux questions suivantes.
Titre : Dimensions des Grands Lacs
NomsSuperficie totale en km²Supérieur82100Michigan57800Huron59600Érié25700Ontario18960Source : Ressources naturelles Canada, Division GéoAccès et Great Lakes Commission.

A. Quelle est la superficie totale des 5 Grands Lacs? __________
B. Quel Grand Lac a une superficie de 25700 km² ? ___________
C. Quelle est l’étendue de cette distribution? ________________
D. De combien de km le lac Huron est-il supérieur au lac Michigan? _____________________________________________




CHAPITRE 5

Diagramme à bandes horizontales « — »et diagramme à bandes verticales « ( »

Les diagrammes à bandes sont utilisés afin de représenter des données qui ont un caractère qualitatif (par exemple la couleur des cheveux, la langue maternelle d’individus, le sexe des gens, …).
Les bandes de votre diagramme peuvent être horizontales ou verticales et doivent se situer sur un même axe. La distance entre chaque bande doit être la même et la hauteur des bandes sera déterminée par la fréquence du tableau de données.
Il est important de se rappeler que vous devez faire un tableau de données avant même de commencer la construction de votre diagramme à bandes.




Les principaux éléments du diagramme à bandes sont : 
1. Titre 4. Bandes 2. Identification de l’axe vertical 5. Graduation 3. Identification de l’axe horizontal 6. Identification des bandes  
 INCLUDEPICTURE "http://w3.uqo.ca/mat3293a/images/Diagramme_bandes.gif" \* MERGEFORMATINET 
Diagramme à bandes verticales

 INCLUDEPICTURE "http://w3.uqo.ca/mat3293a/images/Diagramme_bandesb.gif" \* MERGEFORMATINET 
Diagramme à bandes horizontales
Vous avez le choix entre les deux types de diagrammes à bandes (verticales ou horizontales). À vous de choisir lequel est le plus approprié pour représenter la situation donnée.
Construction 
1. Tracez deux axes perpendiculaires (900). 2. Identifiez les axes. 3. Déterminez l’échelle de graduation. 4. Tracez les bandes (à égale distance les unes des autres et de mêmes largeurs). 5. Identifiez les bandes. 6. Donnez un titre à votre diagramme. 
Exemple :

Voici un tableau de fréquence représentant la couleur des cheveux des élèves d’une classe X

Tableau de fréquences
(
Couleur des cheveux des élèves d'une classe

CouleurFréquenceBlond8Brun14Noir6Roux2
Diagramme à bandes verticales
(


Les données sont représentées par des rectangles dont la hauteur correspond aux données du tableau de fréquences.






Mise en situation 1 

Voici la répartition des points accumulés par chaque
équipe de soccer de la ville de Mont-Soccer

1. Est-ce un diagramme à bandes horizontales ou à bandes verticales? __________________
2. Quelle équipe a accumulé le plus de points? _______________
3. Combien de points l’équipe A a-t-elle obtenus? ____________
4. Quelle est l’étendue de cette distribution? _________________
5. Que représente l’axe horizontal? _________________________
6. Que représente l’axe vertical? ___________________________
7. Quel est le titre de ce diagramme? _______________________

Mise en situation 2 
Un sondage est fait auprès des étudiants du centre Les Apprentissages afin de connaître leur catégorie d’émissions préférées. Ils avaient le choix entre les catégories suivantes : films, nouvelles, sports et téléromans. Ils ne pouvaient en choisir qu’une seule. Voici les résultats compilés.

Catégorie d'émissions préférées par les étudiants du centre de l’éducation des adultes Les Apprentissages.

CatégorieFréquence Films50Nouvelles10Sports100Téléromans45Total205

Représentez la distribution ci-dessus par un diagramme à bandes verticales (.











Mise en situation 3 
Le tableau suivant indique le nombre d’élèves qui ont participé à des activités parascolaires chaque jour de la semaine.
Nombre d’élèves ayant participé à des activités parascolaires
Jour Nombre d’élèves Lundi 50Mardi 85Mercredi 100Jeudi 85Vendredi 30








1. Présentez les données par un diagramme à bandes.









2. Quel jour de la semaine y a-t-il eu plus de participants? ______________
3. Quels sont les deux jours où il y a eu le même nombre de participants? ________________________________________

Mise en situation 4 

Voici les résultats recueillis lors d’un tournoi de golf des étudiants :
Marie109Paul101Henri94Sylvain101Marco 109Lise 79Denis 69Pierre73Suzanne 81 Bernard 82
Louise 88

À l’aide de ces données, construisez un diagramme à bandes horizontales.














Mise en situation 5 

Construisez un diagramme à bandes verticales illustrant les notes de Viviane en français pour l’année dernière.

Septembre 70% octobre 60% Novembre 75% Décembre 70% Janvier 72% Février 75% Mars 78% Avril 75%
Mai 80% Juin 75%

N’oubliez pas d’indiquer un titre et de nommer vos axes (horizontal et vertical)!















Chapitre 6
Pictogramme

Un pictogramme est une  HYPERLINK "http://fr.wikipedia.org/wiki/Graphisme" \o "Graphisme" représentation graphique destinée le plus souvent à comparer deux ou plusieurs quantités. Il emploie des symboles ou des dessins pour faire ressortir la signification des données statistiques.
Un pictogramme est donc un graphique où les quantités sont représentées par des symboles. Le symbole utilisé est, lui aussi, appelé pictogramme.

Exemple :
Voici un pictogramme permettant de connaître le nombre d’élèves préférant les biscuits aux brisures de chocolat pour chaque classe.


Nous pouvons donc représenter des données statistiques à l’aide d’un pictogramme qui est un diagramme semblable au diagramme

à bandes horizontales, mais dans lequel les bandes sont remplacées par des symboles.
Un sondage a été effectué auprès d’élèves d’une classe de première secondaire afin de connaître leur préférence littéraire.

Les livres favoris des élèves de 1re secondaire de l’école
du Rayonnement

 = 2 élèves
Grâce à la légende, on peut comprendre que chaque livre représente 2 élèves. Il est donc facile de connaître le nombre d’élèves préférant les livres de Bandes dessinées.
6 livres x 2 = 12 élèves aiment lire des bandes dessinées.
1. Combien d’élèves préfèrent lire des romans d’amour?
____________________________________________________
2. Pourquoi selon vous dans la catégorie des romans policiers y a-t-il un livre à moitié dessiné? __________________________________


Mise en situation 1 
5 amis désirent savoir qui a rapporté le plus de bonbons lors de la soirée d’Halloween. Chacun vide tour à tour son sac et compte son butin. Étienne, un petit garçon amoureux des statistiques, décide de présenter le tout sous forme de pictogramme.

= ___ bonbons
1. Que représente ce symbole? _______________________
2. Combien vaut ce symbole? ______________________________
3. Qui a ramassé le plus de bonbons lors de cette soirée d’Halloween? __________________ Combien? ________________
4. Qui en a ramassé le moins? ______________Combien? _______
5. En tout, combien ont-ils ramassé de bonbons? _______________



Mise en situation 2 
Julie aimerait représenter sous forme de pictogramme son salaire mensuel des 6 derniers mois. Voici son pictogramme.

 = 500
1. Combien vaut 1 symbole? _________________
2. Pour quels mois a-t-elle eu le plus gros salaire? _______________
3. Pour quel mois a-t-elle reçu le moins d’argent? _______________
4. Quel est son salaire du mois de septembre? _________________
5. Combien a-t-elle gagné d’argent au cours des 6 derniers mois?


Réponse : _____________


Pour construire un pictogramme, il faut :

inscrire un titre;
tracer des axes, les identifier et graduer l’axe vertical selon le nombre d’éléments étudiés;
choisir un symbole représentatif et lui attribuer une valeur, que l’on précise dans la légende;
calculer le nombre de symboles nécessaires à chaque élément et les dessiner.

À vous de jouer!







Mise en situation 1 

Le tableau suivant regroupe les résultats d’un sondage effectué auprès de 470 personnes pour connaître leur marque de voitures préférées.

Marques de voitures préférées

Marque de voitureNombre de personnesHonda130Toyota90Mazda100G.M.80KIA20Ford50Construisez un pictogramme illustrant le tableau ci-dessus en utilisant  comme symbole.  = 20












Mise en situation 2 
Le tableau de données suivant illustre le nombre de médailles gagnées par les 6 meilleurs athlètes du club Les Francs Nageurs.

Nombre de médailles gagnées par les 6 meilleurs athlètes du club Les Francs Nageurs.
NomMédaillesÉtienne30François45Soline50Fabrice40Guylaine45
Construisez un pictogramme illustrant le tableau ci-dessus en utilisant  comme symbole.  = 5 médailles











Mise en situation 3 

En utilisant le symbole , illustrez par un pictogramme la fréquence à laquelle les sportifs du centre Olympe utilisent les moyens de transport mentionnés dans le tableau suivant.

Moyens de transport utilisés par les sportifs du centre Olympe
Moyen de transportFréquenceAutomobile30Autobus80Bicyclette45Planche à roulettes25Marche65
= 10











Chapitre 7
Calcul de la moyenne simple à partir de données d’une distribution statistique

La moyenne est une mesure  HYPERLINK "http://fr.wikipedia.org/wiki/Statistique" \o "Statistique" statistique caractérisant les éléments d'un ensemble.

On calcule la moyenne d'une variable numérique en additionnant les valeurs de toutes les observations incluses dans un ensemble de données, puis en divisant cette somme par le nombre d'observations qui font partie de l'ensemble. Ce calcul permet d'obtenir la valeur moyenne de toutes les données.

Moyenne = Somme de toutes les valeurs d'observation ÷ nombre d'observations


Exemple :

Voici les notes obtenues au dernier examen de mathématique par les 10 élèves de la classe : 12 ; 14 ; 16 ; 12 ; 10 ; 18 ; 16 ; 14 ; 20 ; 14.

Pour calculer la moyenne du groupe, il suffit d’additionner toutes les notes et de diviser le total de la somme par le nombre d’élèves.

13 + 14 + 16 + 12 + 11 + 18 + 17 + 15 + 20 + 14 = 146
150 ( 10 élèves = 15
La moyenne du groupe est donc de 15.

(13 + 14 + 16 + 12 + 11 + 18 + 17 + 15 + 20 + 14) ( 10 = 15

Mise en situation 1 
5 amis reviennent de leur fin de semaine de pêche est décide de calculer la moyenne des poissons pêchés par jour.

Lundi, ils en ont pêché 25.
Mardi, ils en ont rapporté 30.
Mercredi, 50.
Jeudi, 40.
Vendredi, 20.

Calculez la moyenne de poissons pêchés par jour.




Mise en situation 2 
Lise travaille comme réceptionniste et reçoit de nombreux appels chaque heure.
Voici un tableau montrant le nombre d’appels reçus par heure.
Heures9H10H11H13H14H15H16HNombre d’appels24142130222426
Calculez la moyenne des appels qu’elle reçoit par heure.




Mise en situation 3 
Durant le premier trimestre, la moyenne des cinq devoirs de mathématiques d’Aurélie est 12.
Aurélie peut-elle avoir eu 12 à tous ses devoirs ?
oui
non
Peut-elle avoir eu plus de 12 à tous ses devoirs ?
oui
non
Peut-elle avoir eu moins de 12 à tous ses devoirs?
oui
non
Parmi les cinq notes, certaines peuvent-elles être :
- au-dessus de 12 oui non
- au-dessous de 12 oui non
- égales à 12 oui non

Julien a la même moyenne que celle d’Aurélie, mais il a toujours eu la même note à ses cinq devoirs :
Quelle est cette note ? _______________________

Calculez le nombre total de points obtenus par Julien durant le trimestre.



Mise en situation 4 
Durant la projection d’un film à la télévision sont apparues quatre annonces dont on a noté la durée :

3 minutes, 5 minutes, 6 minutes, 2 minutes.

Quelle est la durée moyenne d’un spot publicitaire ? __________




Mise en situation 5 

Dès le début du mois d’octobre (qui compte 4 semaines complètes), Antoine travaille chez « Au bon jambon du pays »
Il a travaillé :
La première semaine : 43h
La seconde : 42h30
La troisième : 37h30
La quatrième : 27h

Calculez la durée moyenne hebdomadaire de travail.



Mise en situation 6 

Le tableau ci-dessous indique pour chacun des mois de l’année le nombre de jours où il a plu.

MoisJanvierFévrierMarsAvrilMaiJuinNombre de jours de pluie
5
6
5
5
8
9MoisJuilletAoûtSeptembreOctobreNovembreDécembreNombre de jours de pluie
3
4
5
14
3
9
Combien a-t-il plu de jours pendant l’année ?_________________

Calculez la moyenne mensuelle de jours où il a plu.



Réponse : ______ jours de pluie


Rappel : La  HYPERLINK "http://fr.wikipedia.org/wiki/Moyenne_arithm%C3%A9tique" \o "Moyenne arithmétique" moyenne arithmétique est la moyenne ordinaire, c'est-à-dire la somme des valeurs numériques (de la liste) divisée par le nombre de ces valeurs numériques.

Pour la calculer, voici les 3 étapes.

Calculer la somme des valeurs des données.
Compter le nombre de données.
Diviser la somme par le nombre de données.

Exemple :
Charles compte le nombre de buts qu’il a comptés au cours des 5 dernières parties de la saison qu’il a jouées. Il désire connaître sa moyenne.
Première partie : 2 buts
Deuxième partie : 4 buts
Troisième partie : 1 but
Quatrième partie : 5 buts
Cinquième partie : 3 buts

Les données sont les buts marqués.
Les valeurs des données : le nombre de buts comptés lors de chaque partie.
Étape 1 : somme des valeurs 2 + 4 + 1 + 5 + 3 = 15
Étape 2 : nombre de données 5 parties
Étape 3 : Somme ( nombre de données  15 ( 5 = 3
La moyenne de Charles pour les 5 dernières parties de la saison est de 3 buts.
Vous voici à la fin de ce parcours mathématique. Des situations supplémentaires d’apprentissage et d’évaluation en aide à l’apprentissage vous permettront de vérifier votre compréhension et votre habileté à résoudre des problèmes liés aux classements de données.

Vous êtes maintenant sans doute en mesure d’interpréter et de produire des classements ensemblistes et statistiques de données de tous genres (objets, fichiers, concepts, résultats d’un sondage, résultats scolaires, etc.). Si c’est le cas, vous ne regarderez plus du même œil les sondages ou les diagrammes dans les journaux ou sur Internet.

Allez voir votre enseignante ou votre enseignant pour des suggestions de travaux complémentaires.

Bon travail! 






 Tiré du Programme d’études Mathématique – Classements ensemblistes et statistiques MAT-P103-2
 Source : http://www.techno-science.net/?onglet=glossaire&definition=6466
 MAT-2008 B&B
 Source : http://w3.uqo.ca/mat3293a/menu.htm
 Source image : http://biblio.alloprof.qc.ca/PagesAnonymes/DisplayFiches.aspx?ID=2748
 Source : http://www.cschic-chocs.net/champagnat/MAT-2008-CSCC-ExSupp-A-questionnaire.pdf
 Source : http://www.cschic-chocs.net/champagnat/MAT-2008-CSCC-ExSupp-A-questionnaire.pdf
 Source : MAT-2008-2 B&B
 Source : http://www.ac-limoges.fr/maths_sciences/IMG/pdf/moyenne_aritmetique.pdf
 Source : http://www.ac-limoges.fr/maths_sciences/IMG/pdf/moyenne_aritmetique.pdf
 Source : http://www.ac-limoges.fr/maths_sciences/IMG/pdf/moyenne_aritmetique.pdf
 Source : http://www.ac-limoges.fr/maths_sciences/IMG/pdf/moyenne_aritmetique.pdf









PAGE 


PAGE 98
MAT P103-2, Classements ensemblistes et statistiques, Centre Christ-Roi, CSPN, Hiver 2011


. automobile
.tracteur
. autobus

. fusée
. hélicoptère
. avion

*Terre

*air

*eau

. canot
. bateau
. kayak

. riz . céréales

.biscuits . gruau

. boîtes de conserve
. soupe
.nouilles

 $%NOXYeghj±²³¹ºÐù÷èÞÑÁ´Ñ¤”ŠÞ|Þm[ފÞLChQx;h»iaJhQx;h»i^JaJmH sH #h&.õh  5CJOJQJ^JaJh  5CJOJQJ^JaJjh»iCJOJQJUh  CJOJQJh  h»i5CJ OJQJaJ h  h  5CJ OJQJaJ h  5CJ$OJQJaJ$h  h  5CJ$OJQJaJ$h»i5CJ$OJQJaJ$h»iCJOJQJh  5CJOJQJ^JaJjh  U 
  5OYZefgijˆ²³´µóèÝÝÝØÐÐÈÈÈÐÐÐÐÐÐÐÈÈØØØ$a$gd  $a$gd»igd»i
$dha$gd 
$dha$gd 
ÆÀ!dhgd  °êîî^hþþþþµ¶·¸¹ºÐù   Ð Ñ úúúúòÀ°{úskkdhgd»idàgd»i5$dh$d%d&d'd-DMÆ
ÿæææNÆÿOÆÿPÆÿQÆÿa$gd»idh-DMÆ
ÿææægd»i2dh$d%d&d'd-DMÆ
ÿæææNÆÿOÆÿPÆÿQÆÿgd»i$a$gd»igd»i ùúü  > ? ˜ Î ¥
¹
¿
Ò
R ³ Í ö E ‘’”•–òçòÖ¿¢ÖÖÖÖ|jÖ|Ö\ÖG;h»iCJOJQJ^J)j-hQx;h»iCJOJQJU^JaJh»iCJOJQJ^JaJ#hQx;h»i5CJOJQJ^JaJ&hQx;h»i5CJOJQJ\^JaJ#hQx;h»i>*CJOJQJ^JaJ9jhQx;h»i0J56CJOJQJU\]^JaJ,hQx;h»i56CJOJQJ\]^JaJ hQx;h»iCJOJQJ^JaJhø)6CJ]aJhQx;h»i6CJ]aJÑ Q R m † ¡ ³ Ì Í Î ä
å
’“”–—˜™š›÷÷âââââÖÎ÷÷÷÷Ãû»»¶¶gd»i$a$gd»i
$dha$gd»idàgd»i „5dh^„5gd»i
& F„5„dh¤^„5`„gd»idhgd»i–š›­®°±º¼¾ÍÎ*CJOJQJ\htW&h»iCJOJQJh»iCJOJQJj?äh»iCJOJQJUh»i
h»iCJ( *h»iCJ(ehrÊÿh»iCJ(OJQJ#h»iCJOJQJehrÊÿ›®¯°²³ÌÍÎÚY‚÷òêêòÃþ¯—€¯
& F
Æ „p„0ýdh^„p`„0ýgd»i
& F
Æ 8„p„0ýdh^„p`„0ýgd»i
& F„dh`„gd»igd»i&$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i$a$gd»igd»i$a$gd»i ‚½Ùþÿ 01çØØÍÍÍÍÍÍÍÍÍÍ£— „Ädh^„Ägd»i)dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i
$dha$gd»i
& F„dh`„gd»i
& F
Æ p„p„0ýdh^„p`„0ýgd»i1_cks´µ;MN„ºÜìÔÔÔ¿¶¿¶¦¶¶“zgd»i
& F
Æ”„Ä„^„Ä`„gd»i
& F„Ä„dh^„Ä`„gd»i
& F„Å„^„Å`„gd»i„Å^„Ågd»i
& F
ÆÐ”„•„0ý^„•`„0ýgd»i
& F
ÆÐôÿ„„Ðdh^„`„Ðgd»i
& F„Ä„dh^„Ä`„gd»iÜÝJK|§¨©ª«¬­¾¿ÀÁÂÃÄÅÆúåúúåúÝÕÕÕÕÕÕÕÕÕÕÕÕúÕ$a$gd»idhgd»i
& F
ÆÐôÿ„„Ð^„`„Ðgd»igd»i¾ÄÆÿÇÈepqràåøìÝɺ«Œz\C2+ hSk h»i h»i5CJ OJQJ\^JaJ 1h»i5CJ OJQJ\^JaJ ehrÊÿ: *h‰ ¨h»i5CJ OJQJ\^JaJ ehrÊÿ#já8h»iCJ OJQJU^JaJ h»i5>*CJ OJQJ^JaJ h»iCJ OJQJ^JaJ h—q¢5CJ(OJQJ^JaJ(h»i5CJ(OJQJ^JaJ(&j×h»i5CJ(OJQJU^JaJ(h»i5CJ(OJQJ^JaJ(h»iCJ(OJQJaJ(h»iCJ(aJ(ÆÇÈÉýþÿ3ÇÉådeqr²ßÍÅÅÅÅÅÅŽ½²½½½½½££
& F„dh`„gd»i
$dha$gd»idhgd»i$a$gd»i2$$d%d&d'd-DMÆ
ÿÀÀÀNÆÿOÆÿPÆÿQÆÿa$gd»ißàè'(XY•ÅÆCEŽ¾¿óîãÛÓʽ½½Âã½½ÂÛ½½gd»idhgd»i„h^„hgd»i
& Fgd»idàgd»i
$dàa$gd»igd»i „ßdh^„ßgd»iåîCJŒŽ«¬ÏÐèCDÝã]a¤¥¦üõíõé×ɸ§˜ƒ¸ÉqÉcÉQÉ?É#jòÚh»iCJ OJQJU^JaJ #h»i5>*CJ OJQJ\^JaJ h&,KCJ OJQJ^JaJ #j3Ïh»iCJ OJQJU^JaJ )j]Áh+Wh»iCJ OJQJU^JaJ h»i6CJ OJQJ^JaJ h26>*CJ OJQJ^JaJ h»i6>*CJ OJQJ^JaJ h»iCJ OJQJ^JaJ #jS£h»iCJ OJQJU^JaJ h»ihSk h»i>* hSk h»ih&,K8âq¢£¤¦{}‘“—™ ÷íããÈãííã»»í®©ãããããgd»i $dh¤ða$gd»i $dà¤ða$gd»idà¤ð$d &d NÆÿ PÆÿ gd»i dà¤ðgd»i dh¤ðgd»idàgd»i¦ {|}‘’“–—˜™š›œžŸ¤«²¿ÝïáÓá¾áº¨áŽáŽáލŽá¨Žá€álá[áIá#jr@h»iCJ OJQJU^JaJ h*CJ OJQJ^JaJ hAòCJ OJQJ^JaJ 2jh»iCJOJQJU^JaJ mHnHsH u"jh»iCJUmHnHsH uh»i)j¼óh€h»iCJ OJQJU^JaJ huE¼CJ OJQJ^JaJ h»iCJ OJQJ^JaJ hu>²h»iCJ OJQJ^JaJ  ¡ŒŽ‘’“”•–—˜™š§õõõõõèÝÕÍÍÍÍÈÈÍ͖2$$d%d&d'd-DMÆ
ÿ³³³NÆÿOÆÿPÆÿQÆÿa$gd»igd»i$a$gd»idàgd»i
$dàa$gd»i $dà¤ða$gd»i dà¤ðgd»i’šÃÄÆÎçèõŒ”•›œžÂÊz ôåÖÂÖ¾²¤~p~h¾`¾X¾~@~/h*CJOJQJ\]^JaJjòh»iUjdØh»iUj™¹h»iUhuE¼CJOJQJ^JaJ h*CJOJQJ\hljh»i>*CJ$\h»i&j„Yh»i5CJ(OJQJU^JaJ(h»i5CJ(OJQJ^JaJ(h»i5CJ(OJQJ^JaJ(h»iCJOJQJ^J§¨ÁÂÃÅÆÇÈÉÊËÌÍÎçèõóô,÷÷÷÷÷÷òòòòòòòò½µ­­­­dhgd»idhgd»i5$dh$d%d&d'd-DMÆ
ÿÀÀÀNÆÿOÆÿPÆÿQÆÿa$gd»igd»i$a$gd»i,;’Ó Œz { | } ~  €  ‚ ƒ „ … ‡ ˆ ÷ÝÝÌÌ÷÷÷ÄÄÄÄÄÄÄÄÄÄĹÄ
$dha$gd»idhgd»i
& F„dh¤`„gd»i
& F
ÆÐ „ „0ýdh¤^„ `„0ýgd»idhgd»iz … † ‡ ˆ ¤ ´ Ã Ä 2!:!`!j!}!~!!Š!!¨!"9"?#ˆ#•#§#öèöÙǸǪ™‹™}™ª™n\N™N™ªÇªhaUCJOJQJ^JaJ#hIOh»i6CJOJQJ^JaJh&,K6CJOJQJ^JaJhuE¼CJOJQJ^JaJh&,KCJOJQJ^JaJ hIOh»iCJOJQJ^JaJh»iCJOJQJ^JaJh&,K5CJOJQJ^JaJ#hnch»i5CJOJQJ^JaJh»i5CJOJQJ^JaJjûh»iCJOJQJUh»iCJOJQJˆ Ã Ä ~!!!"?#@#¨#Í#$$V$$‘$Ä$ÍÅÀÀÀÀÀÅÅÅÅÅÅÅŖ)dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»igd»idhgd»i2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»i§#¨#°#º#¾#Ý#ê#0$C$c$v$§$±$Ä$Ô$ï$õ$ %@%A%B%H%_%ïáÏÁáÏáÏá¯á¯žŒ{fPf;Œ{Œ) jÎðhIOh»i5CJOJQJ^JaJ+hIOh»i5CJOJQJ^JaJmH sH (hIOh»iCJOJQJ^JaJmH sH  hIOh»iCJOJQJ^JaJ#hIOh»i5CJOJQJ^JaJ hƒe¡h»iCJOJQJ^JaJ#hƒe¡h»i5CJOJQJ^JaJhaUCJOJQJ^JaJ#hnch»i5CJOJQJ^JaJh»iCJOJQJ^JaJ hDfâh»iCJOJQJ^JaJÄ$ï$B%›%œ%ù%i&j&{&N'P'‘'¹'Ò¨vnnvÒ¨nnndhgd»i
$dha$gd»i&$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i)dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i,$dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿa$gd»i _%™%š%›%Ê%æ%ì%÷%/&9&:&*CJOJQJ^JaJjh»iUmHnHu#hƒe¡h»i6CJOJQJ^JaJh»i6CJOJQJ^JaJhÐfa5CJOJQJ^JaJh25CJOJQJ^JaJ#hƒe¡h»i5CJOJQJ^JaJhÐfaCJOJQJ^JaJh»iCJOJQJ^JaJ+hIOh»i5CJOJQJ^JaJmH sH 1 jÏðhIOh»i5CJOJQJ^JaJmH sH  hIOh»iCJOJQJ^JaJ}'‘'Y(Z(q(u(v(®(Ë()I)ó)*w*€*ƒ*„*ã*++",S,u,~,™,£,Ú,Û,ÿ,---$-6-7-I-[-\-ìÞʶި޶ޤޒޒިÞìÞoޒޒޒޒޒޒ`’Þ’h©(ž5CJOJQJ^JaJ#hoB¼h»i5CJOJQJ^JaJ hoB¼h»iCJOJQJ^JaJ#h`‡h»i5CJOJQJ^JaJh»ijh»iUmHnHu&hh»i5>*CJOJQJ^JaJ&jhh»i5>*UmHnHuh»iCJOJQJ^JaJ&hƒe¡h»i5>*CJOJQJ^JaJ%¹'á' (1(Y(q(s(u(x(Ë()K)ƒ)»)ó)**‚*ƒ*½*+/+^+÷÷÷÷÷÷÷÷÷÷÷÷÷÷Å÷÷÷÷÷÷÷2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»idhgd»i^+Ž+¾+í+î+",S,T,Œ,,ñ, -_-}-®-¯-Ç-È-Ó-Ô-÷÷÷÷÷ì÷÷÷Ô¼¼¼©÷÷÷÷÷$
Æ´„´dh^„´a$gd»i
& F
Æ ´„´„dh^„´`„gd»i
& F
ƠЄЄäýdh^„Ð`„äýgd»i
$dha$gd»idhgd»i\-y-z-|-}-­-È-Ò-Ó-Ô-.=.Q.\.].,/6/7/8/h/i/{/òàòÏàÀ¯žŠxfWfWò¯žŠxBx) jÎðhšqÞh»i5CJOJQJ^JaJh»i6CJOJQJ^JaJ#hH|ãh»i6CJOJQJ^JaJ#hÄc:h»i5CJOJQJ^JaJ&hÄc:h»i5>*CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ h25>*CJOJQJ^JaJh»i5CJOJQJ^JaJ hoB¼h»iCJOJQJ^JaJ#h`‡h»i5CJOJQJ^JaJh»iCJOJQJ^JaJÔ-.'.].y.z.{.|.¥.¦.§.¨.Ì.Í.Î.Ï.ô.õ.ö.÷.'/(/)/*/+/,/7/÷÷÷ìàààìàààìàààìàààì÷÷÷÷÷÷ „hdh^„hgd»i
& Fdhgd»idhgd»i7/8/¤/¥/Ï/Ú/å/ð/ñ/00)06070o0‚0•0«0¬0ä0ô01 1
1÷÷÷ìáááÕìááá÷ìáááÉìááá÷ „hdh^„hgd»i „8dh^„8gd»i
& Fdhgd»i
& Fdhgd»idhgd»i{/|/}/¤/5060Â0Ã0Å0Æ0É0Ê0Í0Î0Ñ0Ò0Õ0Ö0Ù0Ú0Ý0Þ0á0â0å0æ0õ0ö0111111íÞ̾­¾œ¾œ¾œ¾œ¾œ¾œ¾œ¾œ¾œ¾œ¾‹¾z¾iU¾&hšqÞh»i5>*CJOJQJ^JaJ h25>*CJOJQJ^JaJ j§ðh»iCJOJQJ^JaJ j©ðh»iCJOJQJ^JaJ j¨ðh»iCJOJQJ^JaJ hŸV¤h»iCJOJQJ^JaJh»iCJOJQJ^JaJ#hÄc:h»i5CJOJQJ^JaJh»i5CJOJQJ^JaJ# jÏðh»i5CJOJQJ^JaJ!
1111`1a1b1Ý1Þ1ö12(2@2X2Y2Z2[2À2Á2ø2
3Q3R3÷÷÷÷÷÷÷÷ììììì÷÷÷÷÷¿¿¿÷,$dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿa$gd»i
& Fdhgd»idhgd»i1`1b1t1”1§1ª1Ý1á1â1ú1û122+2,2C2D2¸2¹2½2¾2Á2Â2Ø2 3
3 3Q3S3e3Ã4íßíÐíÐí߿߿߮߿߮߿߮ߙ‡x‡c‡ß‡ß) jÏðhMrôh»i5CJOJQJ^JaJh»i5CJOJQJ^JaJ#hMrôh»i5CJOJQJ^JaJ) jÎðhMrôh»i5CJOJQJ^JaJ jÏðh»iCJOJQJ^JaJ jÎðh»iCJOJQJ^JaJh©(ž5CJOJQJ^JaJh»iCJOJQJ^JaJ#hšqÞh»i5CJOJQJ^JaJR3S3e3f3…3Î3q4­4®4Ã4à4á4N5O5P5Q5R5S5g5h5®5´5÷Â÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷·
$dha$gd»i5$dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿa$gd»idhgd»iÃ4Ä4Û4Ü4Ý4Þ4ß4;5L5R5S5g5h5®5¯5²5³5µ5¶5íßíDzíߠߒ~ßr_rLr>jh»iUmHnHu%j  hüZ¥h»iCJOJQJU^J%jæÿhüZ¥h»iCJOJQJU^Jh»iCJOJQJ^J&hIOh»i56CJOJQJ^JaJh*CJOJQJ^JaJ h»i5CJOJQJ\^JaJ#h»i56>*CJOJQJ^JaJhÕ2ÍCJ OJQJ^JaJ h»(wCJ OJQJ^JaJ h»iCJ OJQJ^JaJ jh»iUmHnHuh»iCJOJQJ^JaJ h* h&,K56 h»i56h-Bvh»i56 h&U»h»iCJOJQJ^JaJ#j´$ h»iCJOJQJU^JaJh»i6CJOJQJ^JaJ#hñ\Óh»i6CJOJQJ^JaJ hñ\Óh»iCJOJQJ^JaJ#h*CJ OJQJ\^JehrÊÿ)h-Bvh»i6>*CJOJQJ]^JaJ h-Bvh»iCJOJQJ^JaJ.jh»iCJOJQJU^JmHnHsH uh»iCJ OJQJ^Jh»i"jh»iCJUmHnHsH uh»iCJOJQJ^JaJ#jÌ h»iCJOJQJU^JaJ+o-o.o/o2o3o4o5o6o7o8o9o:o;oo@oAoBoCoDoEoFoGoðèÜè××××××ÒÒÒÒÒÒÒÒÒÒÒÒÒÒgd»igd»i „Ðdà^„Ðgd»idàgd»i$„hdà^„ha$gd»iGoHoIoJoKoLoMoOoQoRoSoToUoVoWoXoqoroso‘o’oÌoÍoUpˆp¨p©p!qúúúúúúòúúúúúúúúúúêêêêêêêêêêdhgd»i$a$gd»igd»i!q"qŒqqšq›qœqÞqßq(rsrtrurvrwrxrŠr‹rŒrrŽrrr‘r’r“r”r•r÷÷÷÷÷òòòòòòòòòòêêêêêêêêêêêê$a$gd»igd»idhgd»i•r–r—r˜r™ršr›rœržrŸr r¡r¢r£r¤r¥r¦r§r¨r´rµr÷÷÷÷÷÷÷ìääääääß÷÷÷­÷2$$d%d&d'd-DMÆ
ÿ³³³NÆÿOÆÿPÆÿQÆÿa$gd»igd»i$a$gd»i
$dha$gd»i$a$gd»iœrržr¤rÒrÓrØrÙrórôrõrs]sgs‚sïãȹ±­¦–„mVE1E&h»ih»i5CJOJQJ\^JaJ h»ih»iCJOJQJ^JaJ-h Ãh»i5>*CJOJQJ\^JmH sH -h Ãh»i5>*CJ OJQJ\^JmH sH "h Ãh»i5CJ \aJ mH sH h Ãh»i5CJ aJ mH sH  hð@¹h»ih»ij%h»iUh»i5CJ(OJQJ^JaJ(4 *h»i6CJ OJQJ\^JaJ ehrÊÿh»iCJOJQJ^JjÓÉ
h»iCJ OJQJU^JµrÐrÑrÒrÔrÕrÖr×rØrÙrôrõrss‚stt˜u™u¾v¿vÀv÷÷÷÷÷÷÷÷÷޽½µ½½½½½÷÷dhgd»idhgd»i2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»i$a$gd»i‚säst t7t@tütuu+u1uGuMu{uŠu–uÛuìu¾vÂvÐvõvw*CJOJQJ\^JaJBh»ih»iCJOJQJ^JaJehfHqÊ
ÿóóórÊÿ&h»ih»i6CJOJQJ]^JaJ#h»ih»i>*CJOJQJ^JaJ h»ih»iCJOJQJ^JaJpqrÑÒ€€e€f€À€Â€ß€á€â€ã€uv"‚€‚‚‚‚óóÙÍÙÍÙÅÙ¶¶óóóÙÍÙÍ®®dàgd»i$
Ædàa$gd»idhgd»i 
Ædhgd»i
& F#
ÆÐ„„dh¤^„`„gd»i 
Ædàgd»i݀ހ߀à€ã€ë€vðö ‚:‚B‚œ‚­‚®‚êټ٧ٓفmÙYÙ7ÙBh»ih»iCJOJQJ^JaJehfHqÊ
ÿóóórÊÿ&h»ih»i5CJOJQJ\^JaJ&h»ih»i6CJOJQJ]^JaJ#h»ih»iCJOJQJ]^JaJ&h»ih»i5>*CJOJQJ^JaJ)h»ih»i5>*CJOJQJ\^JaJ8jh»ih»iCJOJQJU^JaJmHnHtH u h»ih»iCJOJQJ^JaJ)j*CJOJQJ^JaJh»iCJOJQJ^JaJBh»ih»iCJOJQJ^JaJehfHqÊ
ÿóóórÊÿ h»ih»iCJOJQJ^JaJ&h»ih»i5CJOJQJ\^JaJHh»ih»i5CJOJQJ\^JaJehfHqÊ
ÿóóórÊÿsƒwƒxƒ†ƒŒƒƒ˜ƒ™ƒÏƒÐƒäƒåƒê„ë„ÿ„…-…D…úúêâ××â¥ââââ⚚šš
& Fdhgd»i2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»i
$dha$gd»idhgd»i
& F$„„^„`„gd»igd»i‹ƒƒ™ƒÏƒÐƒãƒäƒåƒ6„D„G„i„݄脉…–…˜…¶…Å…Ê…Ë…Ì…Ö…÷…ø…ü…ý…††%†)†:†E†K†L†`†a†š† †¡†¬†±†º†íÞÌ»§»§™‹™}™‹™k™}™kޙk™}™}™}™}™}™}™}™k™k™‹#hå.Ñh»i5CJOJQJ^JaJhW:HCJOJQJ^JaJh&,KCJOJQJ^JaJh»iCJOJQJ^JaJ&hå.Ñh»i5>*CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ#hàU£h»i5CJOJQJ^JaJh»i5CJOJQJ^JaJ#h»ih»i5CJOJQJ^JaJ*D…Y…Z…—…˜…†v†w†x†y†;‡–‡—‡£‡¤‡ˆ:ˆjˆ–ˆÄˆîˆðˆ.Š0Š‹‹‹ôììììììììììììììôôôôôìììììá
$dha$gd»idhgd»i
& Fdhgd»iº†:‡;‡–‡—‡£‡¤‡°‡ðˆúˆüˆ‰"‰$‰L‰N‰0Š2ŠZŠ‹‹*‹L‹P‹R‹&Œ)Œ6ŒòáòÒÀòÀòÀ±Àò£ò£ò•Àò‡òsbsòTòhuE¼CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ&h$Th»i5>*CJOJQJ^JaJh»iCJOJQJ^JaJjh»iUmHnHuhW:HCJOJQJ^JaJhW:H5CJOJQJ^JaJ#hýXh»i5CJOJQJ^JaJh»i5CJOJQJ^JaJ h6*²h»iCJOJQJ^JaJh»iCJOJQJ^JaJ‹‹(‹*‹R‹T‹ŒŒ&Œ5ŒCŒQŒ_ŒmŒ{Œ|ŒÀŒøŒ9q²êëìíôììììììáááááááììììììììÖÖ
$dha$gd»i
& Fdhgd»idhgd»i
$dha$gd»i6Œ7ŒDŒEŒRŒSŒ`ŒaŒnŒoŒíîïŽŽŽvŽ}Ž·ŽËŽÌŽÍŽž ªíßíßíßíßíßÊß¶¥”߆ßxßxßcßQ#h/c“h»i5CJOJQJ^JaJ)jF¢hòY•h»iCJOJQJU^JaJhW:HCJOJQJ^JaJh&,KCJOJQJ^JaJ h»i5>*CJOJQJ^JaJ hÕ2Í5>*CJOJQJ^JaJ&h!zîh»i5>*CJOJQJ^JaJ)jA]h!zîh»iCJOJQJU^JaJh»iCJOJQJ^JaJ#hTkÞh»iCJH*OJQJ^JaJíïŽŽ·ŽãŽäŽñŽþŽ./s«ì$eŸ «¬ôìììììáááááìììììììôôÖÖ
$dha$gd»i
& Fdhgd»idhgd»i
$dha$gd»iª«¬Ç9‘*CJOJQJ^JaJ#hüprh»i5CJOJQJ^JaJhÕ2Í5CJOJQJ^JaJh&,K5CJOJQJ^JaJ&hàU£h»i5>*CJOJQJ^JaJhtrøCJOJQJ^JaJhW:HCJOJQJ^JaJh»iCJOJQJ^JaJ#hàU£h»i5CJOJQJ^JaJ#h/c“h»i5CJOJQJ^JaJh»i5CJOJQJ^JaJ¬ÇÈ†‘ɑ֑ã‘ó‘’’’w’Ð’÷’ø’ù’ú’ÍÅÅźººººÅÅÅՐÅ)dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i
& Fdhgd»idhgd»i2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»iú’“““ž“Ÿ“ѓғӓߓà“””O”ˆ””Ôð”ñ”/•C•÷÷÷ÊÊÊÊ÷÷÷÷···Â÷÷÷¬
& Fdhgd»i
& F dàgd»idàgd»i,$dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿa$gd»idhgd»iC•[•q•ˆ••¦•§•æ•ç•ò•ó•––g–h–‘–ôôôôÊÊÊ·…ÂÂÂÂ2dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»i
$dha$gd»idhgd»i)dh$d%d&d'dNÆÿOÆÿPÆÿQÆÿgd»i
& Fdhgd»i÷”•¦•ç•ò•ó•–(–H–Ü–ã–ä–ò–—›—œ——¢—È—É—Ê—Ñ—Ò—ö—˜
˜˜t˜’˜£˜ª˜«˜d™òàòÎò¼òÎò«—†ò†ò†t†òe«—†ò«—òSò«—ò#hùpŒh»i5CJOJQJ^JaJh»i>*CJOJQJ^JaJ#hµVh»i>*CJOJQJ^JaJ hµVh»iCJOJQJ^JaJ&hùpŒh»i5>*CJOJQJ^JaJ hÕ2Í5>*CJOJQJ^JaJ#hüprh»i5CJOJQJ^JaJ#h/c“h»i5CJOJQJ^JaJ#hüprh»i>*CJOJQJ^JaJh»iCJOJQJ^JaJ ‘–ž–«–»–Ì–Û–Ü–ä–œ——É—Ê—Ò—÷—ø—ù—÷÷÷÷÷ïïïïïïïïãã dh$Ifgd»idhgd»i
& Fgd»iù—ú—û—ü—„xx dh$Ifgd»izkdå±$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6ööÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöü—ý—þ—ÿ—„xx dh$Ifgd»izkd6²$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6ööÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöÿ—˜˜˜„xx dh$Ifgd»izkd‡²$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6ööÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö˜˜˜˜„xx dh$Ifgd»izkdز$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6ööÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö˜˜˜t˜|˜’˜„||mm$dh$Ifa$gd»idhgd»izkd)³$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6ööÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö’˜“˜”˜•˜‡{{ dh$Ifgd»ixkdz³$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö•˜–˜—˜˜˜‡{{ dh$Ifgd»ixkdƳ$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö˜˜™˜š˜›˜‡{{ dh$Ifgd»ixkd´$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö›˜œ˜˜ž˜‡{{ dh$Ifgd»ixkd^´$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöž˜Ÿ˜ ˜¡˜‡{{ dh$Ifgd»ixkdª´$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö¡˜¢˜£˜«˜c™d™l™‚™‡pp$dh$Ifa$gd»idhgd»ixkdö´$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö‚™ƒ™‰™Ž™‡{l$dh$Ifa$gd»i dh$Ifgd»ixkdBµ$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöd™‰™™•™›™¤™ª™³™º™Á™Õ™Ö™Ú™Û™ššš"š#šŽšÄšÅšêšðšöšüš› ›››"›)›K›íßíßíßíßíßооЭœˆßvßíßíßíßíßíßd#htrøhtrø6CJOJQJ^JaJ#hGQœh»i5CJOJQJ^JaJ&hùpŒh»i5>*CJOJQJ^JaJ hÕ2Í5>*CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ#hùpŒh»i6CJOJQJ^JaJh»i6CJOJQJ^JaJh»iCJOJQJ^JaJ#hùpŒh»i5CJOJQJ^JaJ Ž™™•™š™‡{l$dh$Ifa$gd»i dh$Ifgd»ixkd޵$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöš™›™¤™©™‡{l$dh$Ifa$gd»i dh$Ifgd»ixkdÚµ$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö©™ª™³™¹™‡{l$dh$Ifa$gd»i dh$Ifgd»ixkd&¶$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö¹™º™Á™Ç™‡{l$dh$Ifa$gd»i dh$Ifgd»ixkdr¶$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöǙșšš#štššŽšÄšÅšÍšãš‡ttee$dh$Ifa$gd»i
$dha$gd»idhgd»ixkd¾¶$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö ãšäšêšïš‡{l$dh$Ifa$gd»i dh$Ifgd»ixkd
·$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöïšðšöšûš‡{l$dh$Ifa$gd»i dh$Ifgd»ixkdV·$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöûšüš›
›‡{l$dh$Ifa$gd»i dh$Ifgd»ixkd¢·$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö
› ›››‡{l$dh$Ifa$gd»i dh$Ifgd»ixkdî·$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö››"›(›‡{l$dh$Ifa$gd»i dh$Ifgd»ixkd:¸$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laö(›)›L›M›^›_› ›¡›‡|tttttdhgd»i
$dha$gdtrøxkd†¸$$If–FÖÖ0”ÿºà!&&
tàÖ0ÿÿÿÿÿÿö6öÖÿÿÖÿÿÖÿÿÖÿÿ4Ö4Ö
laöK›L›^›p››Ÿ› ›¡›!œ"œ#œ$œ7œ8œ9œpœ~œ¢œíß;;ͪߕ߄saP?Pß h )/htrøCJOJQJ^JaJ h )/h»iCJOJQJ^JaJ#h )/h»i>*CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ hÕ2Í5>*CJOJQJ^JaJ)jÒ¸hLh»iCJOJQJU^JaJ&hLh»i56CJOJQJ^JaJh»i6CJOJQJ^JaJ#hLh»i6CJOJQJ^JaJh»iCJOJQJ^JaJ#htrøh»i6CJOJQJ^JaJ¡›³›Ç›à›œ!œ"œ$œ8œ9œ£œ9:ËÌÍÎÏÐÑÒÉÉÉÉÉÁ¶ÁÁÁÁÁÁÁÁÁÁÁ®®dàgd»i
$dha$gd»idhgd»i5
& F!dh$d%d&d'd-DMÆ
ÿàààNÆÿOÆÿPÆÿQÆÿgd»i17:—ÊËÒ÷:ž@žSžTžÃžÖž×žnŸtŸ
 ] | Š òäòäÒäÁ°Ò¡’¡„¡p\KòK¡*CJOJQJ^JaJ&hÕ2ÍhÕ2Í5>*CJOJQJ^JaJjh»iUmHnHuh&,K5CJOJQJ^JaJh»i5CJOJQJ^JaJ h»i5>*CJOJQJ^JaJ h )/h»iCJOJQJ^JaJ#h )/h»i5CJOJQJ^JaJh»iCJOJQJ^JaJh&,KCJOJQJ^JaJҝžSžÁžÂžÃž×ž
   ~  €  ‚ ƒ „ … † ‡ ˆ ‰ Š Œ  ˜ ÷÷÷÷÷÷ïïïïïïïïïïïïïïïääÙ
$dha$gd»i
$dha$gd»idhgd»idàgd»iŠ ‹ ˜ ¾ Ø !¡8¡y¡’¡š¡Á¡Ø¡Ù¡ã¡ˆ¢¢™¢Ÿ¢ª¢°¢»¢É¢Ô¢Ù¢ä¢ë¢ö¢ü¢£££ £+£0£Ff